Direct control of magnetic chirality in NdMn2O5 by external electric field

Авторы:
I.A. Zobkalo, A.N. Matveeva, A. Sazonov, A. Sazonov, S.N. Barilo, S.V. Shiryaev, B. Pedersen, V. Hutanu
Год публикации:
2020
Журнал:
Physical Review B vol. 101 064425
Абстракт:

Detailed investigation of the incommensurate magnetic ordering in a single crystal of multiferroic NdMn2O5 has been performed using both non-polarized and polarized neutron diffraction techniques. Below TN ≈ 30.5 K magnetic Bragg reflections corresponding to the non-chiral type magnetic structure with propagation vector k1 = (0.5 0 kz1) occurs. Below about 27 K a new distorted magnetic modulation with a similar vector kz2 occurs, which is attributed to the magnetization of the Nd3+ ions by the Mn-sub-lattice. Strong temperature hysteresis in the occurrence of the incommensurate magnetic phases in NdMn2O5 was observed depending on the cooling or heating history of the sample. Below about 20 K the magnetic structure became of a chiral type. From spherical neutron polarimetry measurements, the resulting low-temperature magnetic structure kz3 was approximated by the general elliptic helix. The parameters of the magnetic helix-like ellipticity and helical plane orientation in regard to the crystal structure were determined. A reorientation of the helix occurs at an intermediate temperature between 4 K and 18 K. A difference between the population of right- and left-handed chiral domains of about 0.2 was observed in the as-grown crystal when cooling without an external electric field. The magnetic chiral ratio can be changed by the application of an external electric field of a few kV/cm, revealing strong magnetoelectric coupling. A linear dependence of the magnetic chirality on the applied electric field in NdMn2O5 was found. The results are discussed within the frame of the antisymmetric super-exchange model for Dzyaloshinsky-Moria interaction.

Вверх