PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI

Authors:
Alexander M. Panich, Moti Salti, Ofer Prager, Evyatar Swissa, Yuri V. Kulvelis, Elena B. Yudina, Alexander E. Aleksenskii, Shaul D. Goren, Alexander Ya. Vul', Alexander I. Shames
Authors from CMD:
The year of the publication:
2021
Journal:
Magnetic Resonance in Medicine N 2 vol. 86 935-942
Keywords:
detonation nanodiamond, gadolinium, MRI contrast agent, relaxivity
Abstract:

Purpose Testing the potential use of saline suspension of polyvinylpyrrolidone (PVP)-coated gadolinium(Gd)-grafted detonation nanodiamonds (DND) as a novel contrast agent in MRI. Methods Stable saline suspensions of highly purified de-agglomerated Gd-grafted DND particles coated by a PVP protective shell were prepared. T1 and T2 proton relaxivities of the suspensions with varying gadolinium concentration were measured at 8 Tesla. A series of ex vivo (phantom) and in vivo dynamic scans were obtained in 3 Tesla MRI using PVP-coated Gd-grafted DND and gadoterate meglumin in equal concentrations of gadolinium, and then T1-weighted hyperintensity was compared. Results The proton relaxivities of PVP-coated Gd-grafted DND were found to be r1 = 15.9 ± 0.8 s−1 mM−1 and r2 = 262 ± 15 s−1 mM−1, respectively, which are somewhat less than those for uncoated Gd-grafted DND but still high enough. Ex vivo MRI evaluation of PVP-coated Gd-grafted DND results with a dose-dependent T1-weighted hyperintensity with a significant advantage over the same for gadoterate meglumin. The same was found when the 2 contrast agents were tested in vivo. Conclusion The novel MRI contrast agent — saline suspensions of PVP-coated Gd-grafted DND — provides significantly higher signal intensities than the common tracer gadoterate meglumin, therefore increasing its potential for a safer use in clinics.

Scroll To Top