Coherent charge and magnetic ordering in Ho/Y superlattice revealed by element-selective x-ray scattering

Authors:
V. Ukleev, V. Tarnavich, E. Tartakovskaya, D. Lott, V. Kapaklis, A. Oleshkevych, P. Gargiani, M. Valvidares, J. S. White, and S. V. Grigoriev
The year of the publication:
2019
Journal:
Physical Review B vol. 100 134417
Abstract:

Magnetic rare-earth/nonmagnetic metal superlattices are well-known to display chiral spin helices in the rare-earth layers that propagate coherently across the nonmagnetic layers. However, the underlying mechanism that preserves the magnetic phase and chirality coherence across the nonmagnetic layers has remained elusive. In this paper, we use resonant and element-specific x-ray scattering to evidence directly the formation of two fundamentally different long-range modulations in a holmium/yttrium (Ho/Y) multilayer: the known Ho chiral spin helix with periodicity 25 Å and a newly observed charge density wave with periodicity 16 Å that propagates through both the Ho and nonmagnetic Y layer. With x-ray circular magnetic dichroism measurements ruling out the existence of a magnetic proximity effect induced moment in the nonmagnetic Y layers, we propose that the charge density wave is also chiral, thus providing the means for the transmittance of magnetic chirality coherence between Ho layers.

Scroll To Top