Направления / Магнетизм и сильнокоррелированные системы / Кубические ферромагнетики с взаимодействием Дзялошинского-Мория
  Кубические ферромагнетики с взаимодействием Дзялошинского-Мория  
 

Systems with Dzjaloshinskii-Moriya interaction under applied field: Fe1-xCoxSi and MnSi

 
 

V. A. Dyadkin, S.V. Grigoriev, S.V.Maleyev, A.I.Okorokov, Yu.O.Chetverikov (PNPI, Gatchina, St.Petersburg, Russia)
D. Menzel (Technische Universitat Braunschweig, Braunschweig, Germany)  
P.Boni, D. Lamago, R.Georgii (TU Munchen, Garching, Germany)
H.Eckerlebe (GKSS Forschungszentrum, Geesthacht, Germany
)

 
  Скачать постер: [1] Скачать публикации по теме: [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]  
 

Fe1-xCoxSi and MnSi structure

 
 
 

1) Space group P213,    a = 0.4558 nm.

2)  4 Me-atoms and 4 Si atoms
     (u,u,u),  (1/2+u,1/2-u,u),
     (1/2-u,-u,1/2+u)  (-u,1/2+u,1/2+u)
     with uMe = 0.138 and uSi = 0.845

3) with
    for Fe1-xCoxSi where x = 0.05 –0.80.
    with .

4) period of the spiral 30 - 300 nm for Fe1-xCoxSi
    period of the spiral 18 nm for MnSi.

5)
   

 
 

[1] Y. Ishikawa, K Tajima, D. Bloch and M.Roth, Soild State Commmun. 19 (1976) 525.
[2] Y. Ishikawa, G. Shirane, J.A. Tarvin, M. Kohgi, Phys.Rev.B 16  (1977) 4956.
[3] J. Beille, J. Voiron, M. Roth, Solid State Commmun. 47 (1983) 399.

 
 

Magnetic order and resistance in Fe1-xCoxSi and MnSi

 
   
 

NB!!! Magnetism  and metallic  properties are correlated at small x

 
 
 

The resistivity and magnetoresistance for crystalline Fe1-xCoxSi and polycrystalline MnSi versus temperature.

N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D.P. Young,  Z. Fisk, Nature  404  (2000) 581

 
 

Phase diagram

 
 
MnSi
 

Fe0.8Co0.2Si

 
      

[1] Y. Ishikawa, G. Shirane, J.A. Tarvin, M. Kohgi, Phys.Rev.B 16  (1977) 4956.

 

[2] K. Ishimoto, H. Yamaguchi, Y. Yamaguchi, J. Suzuki, M. Arai, M. Furusaka, Y. Endoh, J.Magn.Magn.Mat. 90&91 (1990) 163.

 
 

Driving forces of cubic system with DM.

 
 
 

Free energy density
1) isotropic ferromagnetic exchange
W(q) = (A/2)  (q2 + k02) Sq2 +

2) antisymmetric spin exchange  Dzyaloshinskii-Moria (DM) due to lack of a symmetry center:
+  D (q [Sq ´ S -q])+
handedness (left) is determined by sign and value of D.

3) weak anisotropic exchange (AE) interaction fixes direction of spiral along <1,1,1> :
+ (F/2)(qx2 |Sqx| 2 + qy2 |Sqy| 2 + qz2 |Sqz| 2 )

 
 

[1] I.E. Dzyaloshinskii, Sov. Phys. JETP 19 (1964) 960.
[2] P.Bak, M.H.Jensen, J.Phys. C13 (1980) L881.

 
 

Driving forces of cubic system with DM

 
 

    k-dependent part of the classical energy [P.Bak, M.H.Jensen, J.Phys. C13 (1980) L881.]

 
 
 

Hierarchy of interactions:  A >> D a >> F

For components of k:   

For k:   

 
 

Driving forces of cubic system with DM

 
 

Bak-Jensen model:      

 
  (i)       
  (ii)       
  (iii)     if D0  < 0 then  left-handed spiral & if D0  > 0 then right-handed spiral  
  (iv)     Direction of k is not fixed by the Dzialoshinskii interaction. It is the anisotropic exchange , which does !!!  
 

Driving forces in magnetic system of MnSi

 
 
Substitute into
 
   
 

Sci2 (ai2 + bi2) is maximal and equal to 2/3 at (k || c || [111]) and
is minimal and equal to 0    at (k || c || [100])

If    F < 0,   then Ecl is minimized at (k || c || [111]);
If    F > 0,   then Ecl is minimized at (k || c || [100]).

 
 

Interaction of the helix with the field

 
 

1) A k2 = g mB HC2  critical field of the induced  ferromagnetism
2)   k = S D/ A       the helix wavevector

 
  Field contribution to the GS energy  
 
  The field dependent part of the ground state energy [S.V. Maleyev, PRB 73 (2006) 174402 ]
E(h||) = h||k S sin a - classical Zeeman energy
E(h^ k ) – quantum contribution describing the interaction of the helix structure with the field h^ k .
 
 

Experimental geometry

 
 
 

Bragg conditions:

 
 

Experimental setup

 
 

The installation SANS-2 at FRG-1 in Geesthacht (Germany).             

 
 

P0=0.95,    l=0.58 nm,    (lD/l=0.1)

 
   
 

Field induced k-flop in MnSi near TC

 
 
S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Yu.O. Chetverikov, H. Eckerlebe, Phys.Rev.B 73 (2006) 224440.
T ~ TC
 

Four domains spiral structure

 

The single domain spiral structure

 

k-flop

 

The single domain spiral structure again

 
  Interpretation: orientation of the helix under applied field  
 

Conclusion: the existence of spin wave gap
                              
stabilizing magnetic structure with respect to the small field h^ k has been experimentally proved.

 

(Eh + EA)(H) for H || [111]: 
k || [111] branch and k || [1-1 0] branch for parameters HC2 = 340  mT and D = 100 mT.

 
 

Magnetic field evolution

 
 

Rocking scan

Magnetic mosaic

Total intensity

 
 

(H-T) Phase diagram

 
 
 

 

 
 

Fe1-xCoxSi : parameters of the system

 
 
 

What are parameters of the system?

 
 

Maps of the SANS intensities  for four different samples Fe1-xCoxSi and x = 0.10 , 0.15, 0.20, and  0.50

 
     
 

T = 9 K,      H = 1 mT  

 
 

Field evolution for  Fe0.8Co0.2Si  T = 10 K

 
   

The magnetization curves taken at different temperatures T = 5, 10, 20, 30 K.

 
 

Data analysis: field evolution

 
 

The neutron intensity along the ring at q = qC, i.e. as a function of the angle between H and  q for Fe0.8Co0.2Si at  T = 10 K.

 
 
   
 

The integral neutron intensity as a function of the field  at  T = 10 K.

 
   

The center of Gaussian jC and the magnetic mosaic dM of the magnetic Bragg reflection (k  ||  H) as a function of the magnetic field.  

 
 
k-flop in Fe0.8Co0.2Si near TC
 

H – T phase diagram

   
   
 
 

Parameters of the magnetic systemFe1-xCoxSi vs x

 
 
 
 
   
   
   
 
 

Conclusion

 
 
    1. The spin wave stiffness as  was estimated. The monotonous dependence of A on the concentration x demonstrates absence of any correlation between this parameter A and the critical temperature TC.

    2. The DM interaction was also estimated. The x-dependence repeats practically the magnetic T - x phase diagram showing that  either D (DM interaction) or S is responsible for the order parameter of these compounds. 

    3. The spin wave gap   was obtained from the minimum in the field dependence of the peak intensity near T-C. It is shown that the value of the gap is .

 
 
вверх