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Abstract
Below TC = 29 K the weak itinerant ferromagnet MnSi becomes ordered in
a left-handed spin helical structure as a result of the Dzyaloshinskii–Moriya
(DM) interaction. We give a recipe for calculating the orientation of the helix
under an applied field. The recipe is derived on a basis of a theory recently
developed for cubic magnets with DM interaction. The theory evaluates the
ground state energy and the spin wave spectrum. It is shown that in zero field the
orientation of the helix depends solely on the anisotropic exchange interaction
and cubic anisotropy. Under an applied field the helix possesses two types of
magnetic susceptibility: one parallel and another perpendicular to the applied
magnetic field. The perpendicular susceptibility is related to the fact that the
helical structure itself is unstable with respect to the small magnetic field H
applied perpendicularly to the wavevector k. The spin wave gap � provides the
stability of the spin wave spectrum of the helix structure and its presence may
be revealed in the magnetic field behaviour. Our calculations show the essence
of the field-induced transformations of the magnetic structure related to the spin
wave gap. The experimental data provide the evidence for its existence. On
the basis of our findings we discuss a possible scenario for the quantum phase
transition in MnSi.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Below TC = 29 K the weak itinerant ferromagnet MnSi becomes ordered in a left-handed
spin helical structure with a propagation vector 2π/a(ξ, ξ, ξ) with ξ = 0.017 [1, 2]. The
helicity is realized by an antisymmetric Dzyaloshinskii–Moriya (DM) exchange interaction
caused by the lack of a centre of symmetry in the Mn atomic arrangement [3–5]. This
DM interaction is isotropic itself, but anisotropic exchange (AE) and cubic anisotropy fix
a direction of the magnetic spiral below TC along the cube diagonals 〈111〉. The magnetic
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Figure 1. Mutual displacement of two coordinate systems: crystallographic frame with axes
(x, y, z) along the edges of the cube, and systems related to the helix â, b̂ and ĉ with ĉ being
parallel to the helix wavevector k and â, b̂ being in the plane perpendicular to ĉ.

properties of MnSi have attracted much attention in recent years because of the discovery of
a quantum phase transition (QPT) to a magnetically disordered state, which is easily reached
under applied pressure. As was found in [6–8] the magnetic transition temperature TC decreases
with increasing pressure and the magnetic ordering disappears at T = 0 and a critical pressure
of PC ≈ 14.6 kbar. Accounting for the fact that the applied critical pressure changes the value
of the effective moment insignificantly [9], one has to suppose that the magnetic system is close
to ferromagnetic instability.

In this paper we show that the magnetic field susceptibility of the helix in MnSi has two
components: perpendicular and parallel to the magnetic field. We demonstrate that the perpen-
dicular susceptibility is caused by the presence of a small spin wave gap providing stability of
the magnetic system with respect to the magnetic field perpendicular to the helix wavevector
k. In our view the spin wave gap may become a source of ferromagnetic instability, and in
conclusion we propose a scenario for the quantum phase transition under applied pressure.

2. Helix structure and its orientation at zero field

A theory was recently developed to describe the properties of a cubic helical magnet with
DMI [10]. In this theory the following interactions are taken into account: conventional
isotropic exchange, DM interaction D, AE interaction F , cubic anisotropy K and Zeeman
energy. The ground state energy and the spin wave spectrum were evaluated. It is well
known [3–5] that DM interaction is responsible for a magnetic helix structure with the
wavevector

k = SD/A, (1)

where D is the strength of the DM interaction and A is the spin wave stiffness at large momenta.
In cubic crystals the DM interaction fixes the sense of the helix (right or left handed) but

cannot determine its direction. Weak anisotropic interactions determine the orientation of the
helix in zero field. The classical energy for them is given as [10]:

Ean = S2 Fk2
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where the first term is the anisotropic exchange contribution and the second term is cubic
anisotropy. â, b̂ and ĉ are mutually perpendicular unit vectors describing the helix: ĉ is parallel
to the helix wavevector k and â, b̂ are in the plane perpendicular to ĉ (figure 1). It can be shown
that ∑
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Figure 2. Two-dimensional surface of the angle-dependent factor L of the anisotropic energy Ean

as a function of the angles θ and φ.

Then the anisotropic energy (equation (2)) is rewritten as:

Ean =
(

S2 Fk2

4
− 3S4 K
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Vectors â, b̂, ĉ are related to the coordinate system of the crystallographic unit cell through
angles θ and φ varying in intervals (0, π) and (0, 2π), respectively:

ĉ = (sin θ cos φ, sin θ sin φ, cos θ) â = (sin φ,− cos φ, 0)

b̂ = (cos θ cos φ, cos θ sin φ,− sin θ).
(5)

Thus, equation (4) may be represented as

Ean(θ, φ) = 1

2

(
S2 Fk2 − 3S4 K

2

)
sin2 θ(cos2 θ + sin2 θ sin2 φ cos2 φ) + const. (6)

Figure 2 shows a two-dimensional surface for the angle-dependent factor L in equation (6) as a
function of angles θ and φ, where due to φ-evenness we restrict the interval to 0 < φ < π . One
can see from equation (6) and figure 2 that the function L has minima at (i) θ = 0, π and all
φ, (ii) θ = π/2 and φ = 0, π/2, π , maxima at θ = arccos(1/

√
3) � 33◦, π − arccos(1/

√
3)

and φ = π/4, 3π/4 and saddle points at (i) θ = π/2 and φ = π/4, 3π/4; (ii) θ = π/4, 3π/4
and φ = 0, π/2, π . In all minima we have L = 0 and in maxima L = 1/3. It is easy to see
that if the prefactor in equation (6) is positive the helix vector k is directed along one of cubic
edges as in Fe Ge in a high temperature phase [11]; otherwise it is along the cubic diagonals
as in Mn Si [1, 2]. If this factor is close to zero or varies locally the helix is randomly oriented
(Fex Co1−x Si case [12]).

3. Effect of the magnetic field on helix orientation

If the magnetic field is applied along the helix axis H ‖ k the classical energy depends on the
product of H‖ and the mean spin induced by the field, S sin α, where α is the inclination angle
of the spin driven out of the plane perpendicular to k by the external field and determined by
sin α � −H‖/HC2 for H < HC2 and sin α = −1 for H > HC2 and HC2 is the critical field
for the transition from the conical spin state to the ferromagnetic spin state. The critical field is
determined through the major interactions as [10]:

gμB HC2 = hc = Ak2 + SFk2/3 ≈ Ak2. (7)

3



J. Phys.: Condens. Matter 19 (2007) 145286 S V Grigoriev et al

From equations (1) and (7) one can estimate the major interaction of the system such as the
high-momentum spin wave stiffness A and the DM constant D.

In the case of a magnetic field that is not parallel to the helix axis the field-dependent part
of the ground state energy is given by [10]:

Eh = − Sh2
‖

2hc
− Sh2

⊥�2

2hc(1 + cos2 α)[�2 − (h2
⊥/2) cos4 α] . (8)

Here h‖, h⊥ are the components of the magnetic field h parallel or perpendicular to the helix
wavevector k. The first term of this expression is the magnetic part of the classical energy
mentioned above. The second term describes the interaction of the field, perpendicular to
the helix vector, with the helix itself. Here the presence of the positive spin wave gap � is
postulated, because otherwise the magnetic subsystem is unstable with respect to an infinitely
small perpendicular magnetic field. According to experimental data [11, 13], the helix rotates
toward the field direction at gμH 
 hc = Ak2. Thus we can put cos2 α � 1 and obtain from
equation (8):

Eh = − Sh2

2Ak2

[
cos2 � + sin2 �

2(1 − h2 sin2 �/(2�2))

]
, (9)

where � is the angle between the helix axis k and the field H

cos2 � = (ĉĥ)2 and sin2 � = 1 − (ĉĥ)2. (10)

If the field is directed along the three principal directions:

(i) h ‖ [111], ĥ = (1/
√

3)(111);
(ii) h ‖ [110], ĥ = (1/

√
2)(110);

(iii) h ‖ [001], ĥ = (001);

the expressions for cos2 � are given by:

(i) cos2 � = 1
3 (sin θ cos φ + sin θ sin φ + cos θ)2 (11)

(ii) cos2 � = 1
2 (sin θ cos φ + sin θ sin φ)2 (12)

(iii) cos2 � = cos2 θ. (13)

Substituting equations (11)–(13) in equation (9) one obtains the magnetic energy as a function
of the variables θ and φ. Figure 3 shows three-dimensional pictures of the ground state
magnetic energy for h ‖ [111] for h = 0.1� (a), h = � (b) and h = 1.2� (c). The surface
shown in figure 3(a) has a minimum at θ = arccos(1/

√
3) and φ = π/4, corresponding to the

[111] axis and parallel to the field. As the field increases to h = � a new valley appears on
this surface (figure 3(b)). The valley is displaced in the direction perpendicular to the field and
reveals the presence of a new minimum. This valley is too shallow compared to the minimum
provided by the parallel component of the field along the [111] axis. The valley becomes deeper
than the minimum along the [111] axis at � < h <

√
2� (figure 3(c)). In this range of the field

one can expect that the vector k rotates from the [111] direction. Similar pictures may be drawn
for h ‖ [110] on the basis of equation (12) and for h ‖ [001] on the basis of equation (13). In
the latter case the pictures become two dimensional since the magnetic energy does not depend
on φ (see equation (13)).

The real orientation of the helix axis is determined by competition between the magnetic
energy (equations (9) and (11)–(13)) and the anisotropic exchange energy along with the cubic
anisotropy (equation (6)):

Eg = Ean + Eh. (14)

Minimizing this expression we are able to calculate the orientation of the helix wavevector k at
any value of the field.
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Figure 3. Two-dimensional surface of the ground state magnetic energy for h ‖ [111] for
h = 0.1� (a), h = � (b) and h = 1.2� (c).

4. Experimental evidence

The most intriguing feature in the behaviour of the magnetic system of MnSi under applied
field seems to be the appearance of a minimum in the ground state energy in the direction k
perpendicular to the magnetic field and to the [111] axis. Experimental evidence for this was
recently obtained in [14], where the helix structure of MnSi under applied field was investigated
near TC = 29 K by small angle scattering of polarized neutrons. It was found that in zero field
the magnetic structure of the MnSi consists of left-handed helices oriented along four 〈111〉
axes, so that four different domains coexist. The magnetic field, applied along the [111] axis,
lifts the degeneracy of the magnetic system. The axis along the field becomes energetically
more favourable as compared to the other three 〈111〉 axes. This single domain structure
appears above the magnetic field HC1, which in the critical range is of the order of 30 mT.
Further increase of the field leads to the 90◦ reorientation of the spin helix from the [111] axis
(also the field axis) to the [11̄0] axis (perpendicular to the field) in the field range from 130 to
180 mT. Reverse rotation occurs at H > 180 mT. The helix transforms into a conical structure,
which becomes the field-induced ferromagnet at HC2 � 350 mT at T = 28.5 K. This 90◦
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rotation occurs in close vicinity to TC only and elucidates the nature of the so called A-phase
observed by different techniques in [15–17].

Thus we deal with the k rotation under applied field from one energetically favourable
direction (parallel to the field) to the other (perpendicular to it). This phenomenon can be well
described by equations (9) and (11) in combination with equation (6). This observation gives
the experimental evidence for the spin wave gap � ∼ gμB Hin/

√
2 that provides the stability of

the spin wave spectrum with respect to the magnetic field perpendicular to k. Two contributions
to the spin wave gap are considered in [10]. One contribution stems from the interactions
between spin waves �2

SW ∼ h2
c/(4S), which is always positive. The second contribution is

determined by the cubic anisotropy: �2
cub ∼ S3 K hc. It is seen that �2

cub may have an arbitrary
sign. So the different contributions to the gap may compete. Changing the sign and the strength
of the cubic anisotropy, for example by pressure, may lead to a quantum phase transition from
the ordered to a spin liquid state.

5. Conclusion

In conclusion, we give a recipe for calculating the helix wavevector orientation in MnSi under
an applied field. The formulae derived are able to describe the experimental findings presented
in [11, 13, 14].
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