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The compound Fe1−xCoxSi is a good representative for a cubic magnet with Dzyaloshinskii-Moriya interac-
tion. On the basis of the neutron diffraction and superconducting quantum interference device measurements,
we built the H-T phase diagram for the compound with different x from 0.1 to 0.7. The same set of parameters
governs the magnetic system for different x. These parameters are well interpreted in the framework of the
recently developed theory �S. V. Maleyev, Phys. Rev. B 73, 174402 �2006��. As a result, the spin-wave
stiffness, the Dzyaloshinskii constant, the anisotropic exchange constant, and the spin-wave gap caused by the
Dzyaloshinskii interaction have been obtained and plotted as a function of x. The changes of the magnetic
structure with x can be well interpreted on the basis of our findings.
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One of the most interesting problems in condensed matter
physics in the past decade is the paradigm of quantum phase
transitions �QPTs�. In particular, MnSi, the cubic magnet
with Dzyaloshinskii-Moriya �DM� interaction, has attracted
much of the researchers’ attention. This MnSi system is
known to suffer the QPT under hydrostatic pressure P as the
magnetic order disappears upon the increase of P �TC→0 at
P→Pc�15 kbar�.1,2 In spite of the great interest, neither the
role played by the DM instability in this QPT was clarified
nor any other parameter, which is responsible for the QPT,
has been established. Similar to the pressure effect in MnSi,
the variation of the cobalt concentration x in the compound
Fe1−xCoxSi results in a strong change of TC. Therefore, the
study of the principal interactions, their interplay, and their
relation to TC in Fe1−xCoxSi would shed a new light on the
QPT in MnSi and relative systems. On the other hand, the
recent study of a single atomic layer of manganese on tung-
sten demonstrated the existence of the spin spiral structure
with the long period of 12 nm instead of antiferromagnetic
ordering, which is characteristic for Mn. This observation
was interpreted through the appearance of the DM interac-
tion on magnetic surfaces because such surface lacks obvi-
ously the inversion symmetry.3 This finding changes the
whole concept of the magnetic structures in nanomagnetism
as it introduces a new important DM interaction into the
consideration of the nano-object’s properties. The theoretical
approach, which is applied to explain this phenomenon, is
similar to that made by Bak and Jensen4 for the interpretation
of the spiral structure in MnSi. Therefore, new theoretical
and experimental efforts to describe and to understand the
fascinating behavior of MnSi-type compounds are of great
interest as they become the model systems for magnetic low-
dimensional and nanoscale objects.

It is well known that the cubic B20-type compound
Fe1−xCoxSi orders in a one-handed spin helical structure.5–8

In analogy to the magnetic structure of MnSi �Refs. 9 and
10� and FeGe,11 the helicity is induced by an antisymmetric
Dzyaloshinskii-Moriya exchange interaction caused by the
lack of a center of symmetry in the arrangement of the mag-
netic atoms Fe and Co.4,12,13 This DM interaction is isotropic

in cubic crystals, and a weak anisotropic exchange �AE� in-
teraction along with cubic anisotropy should fix the direction
of the magnetic spiral.4 In Fe1−xCoxSi, the helix wave vector
k shows a weak tendency to orient along the �100� axis.
Upon the increase of the Co concentration, this tendency
disappears as a result of disorder, arising due to Co-to-Fe
substitution, which destroys the local cubic symmetry. FeSi
is a narrow-gap semiconductor with a band gap of about
30 meV �Ref. 14� and a nonmagnetic ground state.15 The
Fe1−xCoxSi compounds remain paramagnetic for 0�x
�0.05, while at x� �0.05,0.8�, they order magnetically and
become metallic.14,16 The pure CoSi is, however, a diamag-
netic semimetal.17 Thus, the magnetic and transport proper-
ties of these compounds are strongly correlated, showing
also a positive magnetoresistive effect in the ordered phase.18

The critical temperature TC for different concentrations x is
plotted in Fig. 1. This Brief Report is aimed at estimating the
principal interactions that determine the magnetic structure
and discussing their relation to the value of the critical tem-
perature TC.

The magnetic properties of the Fe1−xCoxSi single crystals
�x=0.10, 0.15, 0.20, and 0.50 at. %� under an applied mag-
netic field were studied in detail. The samples were magneti-
cally characterized by superconducting quantum interference
device magnetometry, and their magnetic structure was stud-
ied by small angle neutron diffraction. From the diffraction
experiment, one can build the magnetic phase diagram
shown in Figs. 2�a�–2�c� for Fe0.85Co0.15Si, Fe0.8Co0.2Si, and
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FIG. 1. Critical temperature TC as function of the Co concentra-
tion x ��, Refs. 5 and 6; �, Refs. 7 and 8; and �, this study�.
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Fe0.5Co0.5Si, respectively. These phase diagrams are very
similar and can be described by the same set of parameters
HC1, HC2, and Hfl.

The magnetic structure of Fe1−xCoxSi in the absence of an
applied field consists of spiral domains with the wave vector
k, which is either randomly oriented for some concentrations
or has a slight preference to orient along the cube edges:
k � �100�. The value of k changes with the concentration, but
does not change with the temperature. The applied magnetic
field tends to reorient the helix wave vectors of different
domains along the field axis. The process of the reorientation
starts from the threshold field HC1 when the interaction of the
helix with the magnetic field becomes stronger than the local
anisotropy of the system. In the scattering, this is reflected
through a concentration of the scattering intensity along H
when the single domain conical structure is formed. This

single domain structure remains stable up to the critical field
HC2 when the transition from the conical state into the fer-
romagnetic state occurs. In addition, a k flop of the helix
wave vector was found in a certain field range and slightly
below TC, similar to that observed in MnSi.19 The k flop is
seen in the diffraction experiment as a 90° jump of the wave
vector from k �H to k�H. Going deeper into the k-flop
phase, the intensity of the Bragg reflection at q=k �H de-
creases, while a new Bragg spot appears at k�H. The field
Hfl shows the boundary of the new k-flop phase. The field
value associated with the absolute minimum of the intensity
for k �H is denoted as Hgap, in accordance with interpretation
given below. These phase diagrams �Fig. 2� are well inter-
preted within the theory recently developed by one of the
authors20 on the basis of the Bak-Jensen model.4 We present
the essence of this theory below.

We take into account the following interactions: conven-
tional isotropic exchange �J�, DM interaction �DM�, the an-
isotropic exchange �AE� interaction, cubic anisotropy �C�,
and the Zeeman interaction with the magnetic field, assum-
ing the hierarchy J�DM�AE	C. In accordance with Refs.
4 and 12, the helical order is stabilized due to conventional
exchange and DM interactions, and the helix wave vector is
defined as

k = SD/A , �1�

where D is the strength of the DM interaction and A is the
spin-wave stiffness at momenta q�k.

The orientation of the helix vector k relative to the crystal
axes is governed by the anisotropic energy

Ean = 
S2Fk2

2
−

3S4K

8
�L , �2�

where F and K are constants determining the strength of the
anisotropic exchange and cubic anisotropy, respectively. L
=1−�i=x,y,zki

4 /k4 is a cubic invariant with two extrema equal
to 2/3 and zero for the vector k along the �111� and �001�
directions, respectively.

In Ref. 20, the ground state energy in the magnetic field
and the spin-wave �SW� spectrum were evaluated. It is
shown that the helical systems with the DM interaction are
unstable with respect to the small magnetic field applied per-
pendicular to k unless they are stabilized by a small gap in
the spin-wave spectrum �. The magnetic field depending
part of the ground state energy for small fields g�BH
��
2 is given by20

EH � −
Sg�B

2HC2
�H�

2 +
H�

2 �2

2��2 − �1/2��g�BH��2�� , �3�

where H� and H� are the field components parallel and per-
pendicular to the helix wave vector k. The first term with H�

is a classical part of the Zeeman energy. The second one has
a quantum origin, and it describes the interaction of the field,
perpendicular to k, with the helix as an individual entity. For
small fields g�BH��
2, the major contribution to the spin-
wave gap is due to DM interaction, which breaks the total
spin conservation law. The second term in Eq. �3� results in
the appearance of the k-flop phase near TC at H	Hgap �Fig.

FIG. 2. H-T phase diagram for �a� Fe0.5Co0.5Si, �b� Fe0.8Co0.2Si,
and �c� Fe0.85Co0.15Si. For all three Co concentrations, the com-
pound is paramagnetic above TC. Below TC and at H�HC1, a spiral
spin structure occurs with the k vector either oriented randomly or
along the �100� direction. Different domains tend to orient along the
field axis in the region between HC1 and HC2. Above HC2, the
sample orders ferromagnetically.
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2� when the perpendicular configuration of k with respect to
the field axis becomes energetically more favorable than the
parallel one. The detailed analysis of this phenomenon is
given in Ref. 19. The important consequence of Eq. �3� is
that the spin-wave gap can be experimentally estimated near
TC,

� � g�BHgap/
2. �4�

The perpendicular configuration of the helix in the field
becomes unstable if g�BH��
2�, and hence, above this
field, the helix wave vector has to be oriented along the field.
For a complete analysis of the k rotation, one has to study
the evolution of the minimum of Ean+EH as function of the k
direction.21

According to the theory,20 for small fields, the SW gap
stems from the spin-wave interaction only. It is temperature
independent and given by

�SW = c�SD�2/2A , �5�

where c has to be smaller than unity.
After k has rotated along the field direction, the helix

transforms into a field-induced ferromagnet at the critical
field20

g�BHC2 = Ak2, �6�

where A is the spin-wave stiffness at q�k.
The theory given above was first applied to MnSi.22 Par-

ticularly, it was shown that the value of the stiffness Am
=50 meV Å2 measured by three-axis spectroscopy for T
=5 K �Ref. 10� coincides practically with the value esti-
mated from Eq. �6�: Aest=50 meV Å2. Thus, the validity of
this expression �Eq. �6�� was proven experimentally. Ac-
counting for the fact that Eq. �1� is the definition, one is able,
from the parameters of the magnetic structure measured in
the experiment �k, Hgap, and HC2�, to calculate the major
driving interactions of the magnetic system, such as the spin-
wave stiffness A=g�BHC2 /k2, the Dzyaloshinskii constant
SD=Ak, and the spin-wave gap �	g�BHgap /
2.

It should be noted that Fe1−xCoxSi has the same, as MnSi,
crystallographic structure without a symmetry center and the
same magnetic helical structure based on DM interaction.
The similarity of the magnetic structures is pointed out by
the magnetic H-T phase diagrams, which are very much
similar for both systems. Therefore, we suppose that the
theory applicable to MnSi should also be valid in the case of
Fe1−xCoxSi.

We have revisited the Fe1−xCoxSi system in order to ob-
tain values of the principal interactions as a function of Co
concentration x. The investigations performed for different
Co concentrations show a similar behavior characterized by
the fields HC2 and Hgap, and the helix wave vector k. We plot
these parameters as function of the Co concentration x in Fig.
3. For completeness, we used also the values of these param-
eters as obtained by Beille et al. in Refs. 5 and 6, and by
Ishimoto et al. in Refs. 7 and 8. As seen from Fig. 3�a�, the
length of k increases at small x, has a maximum at x	0.2,
and finally decreases smoothly, approaching zero at x
�0.8–0.9. The x dependence of HC2 �Fig. 3�b�� and Hgap
�Fig. 3�c�� demonstrates a similar behavior.

As shown above, one can obtain the principal interactions
of the system from these experimental parameters using Eqs.
�1�, �4�, and �6�. Figure 4 shows the dependence of the en-
ergies A /a2, SD /a, and � on the concentration x. The ex-
change energy A /a2 rises smoothly with increasing x, show-
ing no maximum �Fig. 4�a��. All experimental values, except
for x=0.7, follow a straight line, which gives the value A
=0.9 meV when extrapolating to x=0. Thus, one can con-
clude that the transition temperature TC shown in Fig. 1 is
not directly related to the exchange energy A /a2. Opposite to
this, the DM interaction Da increases with increasing Co
concentration x, has a maximum at x=0.35, and decreases to
zero at x�0.8. Thus, the value of the DM interaction �Fig.
4�b�� follows the x dependence of TC �Fig. 1� and is, likely,
related to the T-x phase diagram of this compound.

The behavior of the spin-wave gap � as function of x is
similar to that of the DM interaction �Fig. 4�c��. In particular,
an extrapolation of � to the small-x range gives a value of
��0 at x�0.05, and it also decreases for large x. Testing
the hypothesis on the origin of the SW gap, we plot the
values of � calculated from Eq. �5� using the parameters A
and SD obtained from the experiment �smooth curve in Fig.
4�c��. It is seen that the calculated curve �Eq. �5�� represents
the experimental values obtained from Hgap for c=0.33. This,
indeed, evidences that the SW gap is caused by the spin-
wave interaction mediated by the DM interaction. On the
other hand, one can conclude from our data that the SW gap
� is not directly related to the value of the critical tempera-
ture TC because, for example, at x=0.5, the SW gap is very
small, whereas TC=38 K is relatively high �see Figs. 4�c�
and 1, respectively�.
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FIG. 3. Dependence of �a� the helix wave vector k, �b� the
critical magnetic field HC2, and �c� the k-flop field Hgap on the Co
concentration x for Fe1−xCoxSi ��, Refs. 5 and 6; �, Refs. 7 and 8;
and �, this study�.
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In our view, the SW gap is responsible for the stability of
the perpendicular �field-to-helix wave vector� configuration
but not for the stability of the helix structure itself. Thus, the
small SW gap value leads only to the orientation of k along
the field axis at a rather small field as is observed at
x=0.5.21,23

The obvious relation between TC and the DM interaction

SDa can be explained by the following consideration: It is
known that the DM interaction is caused by the first order
spin-orbit coupling. We suppose that the substitution of Fe
by Co results in a special nearest-neighbor configuration �Fe-
Fe-Co�, producing this spin-orbit coupling of the electron
clouds. Such spin-orbit coupling occurs neither for �Fe-Fe-
Fe� nor for �Co-Co-Co� nearest-neighbor configurations.
Naturally, this leads to the maximum DM interaction at x
=0.33 and to the maximum ordering temperature of the helix
structure caused by this interaction. The detailed picture is
not clarified yet.

We have applied a recently developed theory for cubic
magnets with the Dzyaloshinskii-Moriya interaction20 in or-
der to interpret the results of experiment on Fe1−xCoxSi. We
evaluated the major interactions of the system �A, SDa, and
the spin-wave gap �� from our diffraction experiments using
the theory mentioned above.

�1� From the critical field HC2 and the helix wave vector
k, we obtained the exchange energy as A /a2

�g�BHC2 /k2a2. The monotonous dependence of A /a2 on
the concentration x demonstrates the absence of any correla-
tion between this parameter and the critical temperature TC.
The latter shows a slightly asymmetric bell-like shape as
function of the Co concentration x, with a maximum at x
	0.35.

�2� The DM interaction SD=Ak was also obtained. Its x
dependence resembles the behavior of TC showing that the
DM interaction is, likely, responsible for the critical tempera-
ture of these compounds.

�3� The spin-wave gap �	g�BHfl /
2 was derived. It is
shown that �i� the SW gap is caused by the DM interaction
and �ii� its value is proportional to D2 /2A, in accordance
with the theoretical predictions.
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FIG. 4. Dependence of the �a� exchange energy of the order
A /a2, �b� DM energy SD /a, and �c� the spin-wave gap � on the Co
concentration x for Fe1−xCoxSi. The points show the parameters
calculated from the data taken from Refs. 5 and 6 ���, from Refs. 7
and 8 ���, and from this study ���.
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