Направления / Магнетизм и сильнокоррелированные системы / Инварные системы | ||||||||
Инварные системы | ||||||||
Spin wave dynamics of Fe65Ni35 invar studied by polarized SANS |
||||||||
S.V. Grigoriev, A.I. Okorokov, S.V. Metelev (Petersburg Nuclear Physics Institute, St.Petersburg, Russia) |
||||||||
Скачать постеры: постер C. Григорьева. Скачать публикации по теме: [1] | ||||||||
The goal is: to examine the behaviour of spin-wave stiffness of FeNi invar in the range of low q and w in the wide temperature range. |
||||||||
Introduction | ||||||||
In compliance with Bloch the temperature dependence of the saturation magnetization Ms is Ms (T)=Ms(0)(1-BT3/2), where В=[2.612qμH/ Ms(0)]( kB/4πD)3/2), kВ is the Boltzman constant and D is the spin wave (SW) stiffness, which is D(T)=D(0)(1-AT5/2) for a Heisenberg ferromagnet. There is discrepansy between SW stiffness Dm(T) as determined by calculation through the bulk magnetization and by neutron scattering Dn(T). Both of these D coincide for the majority of isotropic ferromagnetic materials apart from invar alloys. For Invars the Dm(T) decreases faster with increasing temperature than Dn(T). An extensive discussion on this problem have been done [1,2] and an idea of “hidden excitation” was proposed for the explanation of this discrepancy. |
||||||||
Method of experiment |
||||||||
For determination of Dn(T) we use the method of “inclined geometry” which allows one to extract the antisymmetric polarization dependent part of the scattering: |
||||||||
![]() |
where
|
![]() |
||||||
where ε is spin–wave energy, e=q/q, m=H/Н and Гq is SW damping. As Ka(q,w) is an odd function of w for w<<T, the integral is equal to zero at usual used situation when e|| or ^m on account of angle factor (em)2: |
||||||||
![]() |
||||||||
The integral is not equal to zero only if φ ≠ 0 or π/2 and it reaches a maximum at φ=45º. This situation when angle φ between H and q is not zero or 90º was named [5-8] as “inclined geometry”. Moreover, the integral in (dσ/dΩ)a is antisymmetrical with respect to the scattering angle component θx in the k-H plane (Fig.1). This makes it possible to determine the antisymmetrical contribution as |
||||||||
![]() |
||||||||
The example of the ΔI(θ) distribution on detector plane is shown on Fig.2. |
||||||||
Scheme of SAPNS experiment |
||||||||
![]() |
||||||||
Antisymmetrical SW scattering of polarized neutons ΔI | ||||||||
|
||||||||
Experiment | ||||||||
The study was performed on the invar sample Fe65Ni35 shaped as a plate with a width of 12 mm, length of 40 mm and a thickness of 1 mm. The alloy was prepared from pure components and homogeneized 100 h. at 1100º C. After fast cooling the sample was annealed 100 h. at 600º C. |
||||||||
The experimental data for invar Fe65Ni35 |
||||||||
|
||||||||
D(T)-result |
||||||||
It was obtained that temperature dependence of SW stiffness D (T) for Fe65Ni35 strongly differs from law D(T)=D(0)(1-AT5/2) and is well described by the scaling relation D=D0τx, where τ=(Тс-Т)/Тс and х=0,48±0,01 in diapason 0.1 < τ <0.9 (Fig.5). The value of D0 was found D0=137±3 meVÅ2 for the w range 0,01 – 0,1meV in good agreement with the 3-axis spectrometer data for w>0,5 meV [1,2]. The TC is found to be equal to 485 К [10]. |
||||||||
|
||||||||
|
||||||||
The problem of SW gap Δ |
||||||||
|
||||||||
Reference |
||||||||
1.Y. Ishikawa, S. Onodera, K. Tajima. J.Magn.Magn.Mat. 10 (1979) 183. 2. S. Onodera, Y. Ishikawa, K. Tajima. J.Phys.Soc.Jap. 50 (5) (1981) 1513. 3. P.J. Brown, I.K. Jassim, K.U. Newmann, K.R.A. Ziebeck. Physica B 161 (1989) 9. 4. P.J. Brown, B. Roessli, J.G. Smith at.al, J.Phys.: Condens. Matter 8 (1996) 1527. 5. A.V.Lazuta, S.V.Maleyev, B.P.Toperverg. Sov.Phys.JETP 54 (1981) 782. 6. A.I. Okorokov, V.V. Runov, B.P. Toperverg et.al. JETP Lett. 43 (1986) 503. 7. B.P.Toperverg, V.V. Deriglazov, V.T.Mikhailova. Physica B 183 (1993) 326. 8. S.V. Grigoriev, S.V. Maleyev, A.I.Okorokov et al. Appl. Phys. A 74 (2002) 719. 9. V. Deriglazov, A.I. Okorokov, V.V. Runov, B.P. Toperverg et.al. Physica B 181-182 (1992) 262. 10. S.V.Grigoriev, S.V.Maleev, A.I.Okorokov, H.Eckerlebe, and N.H. van Dijk. Critical scattering of polarized neutrons in the invar Fe65Ni35 alloy. Phys.Rev. B 69, 134417 (2004). 11. S.V. Maleev. Zh.Eksp.Teor.Fiz. 28 (1965) 1448. 12. M.M. Abd-Elmegud and H.Micklitz. Physica B 161 (1989) 17-21. 13. M. Matsushita, S. Endo, K. Miura, F. Ono, J.M.M.M., 256 (2003) 352. 14. M. Matsushita, Y. Miyoshi, S. Endo, F. Ono, Phys.Rev.B, 72 (2005) 214404. |
||||||||