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Neutron TAS 
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Neutron Three-Axis Spectrometers: 
•  access to large Q,ω   range 
•  energy resolution ΔE/E ≈ 5-10% 
•  efficient for ω(q) 
•  lacking resolution for Γ(q) 
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TAS resolution 
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TAS resolution 

TAS setup combined with 
spin-echo 

(TOF Fourier technique) 
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normal TAS setup with 
perfect monochromator & 
analyzer crystals (Si, Ge) 



®

© J. Kulda ILL 2016 5 

Spin-echo principle 

Larmor precesssion:  

  
φ = γ L

H l
vn

γL = 18324 rad Oe-1s-1  

Spin-echo condition:  

€ 

Δφ = φ f −φi = γ L
H f l f −Hi li
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= 0
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stationary phase 
φ = const surfaces perpendicular to ki, kf 
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TAS + spin-echo 

overall spin-echo phase is 
only stationary for ΔE = const, 

i.e. ω(q) =  const 

ki 

kf 
Q 

The simple case – combining the traditional QENS spin-echo & TAS 

ω 

q 

φ = const 

ΔE = const k 
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TAS + spin-echo 

Fourier time τf  

  

€ 

Δφ = τF
ΔE
!

General SE condition:  

optimum field 
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stationary phase 
φ = const surfaces perpendicular to ki, kf 
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TAS + spin-echo 

The sophisticated case – matching the slope of a dispersion ω(q)  

φ = const 

ΔE = const k 

B 

ω 

q 

R(Q,ω) 

•  each point of the resolution ellipsoid 
corresponds to a combination ki, kf  
•  we need to manipulate the phase 
fields around  ki, kf and project them 
onto R(Q,ω) 

 rotate B with respect to ki, kf  

ki 

kf Q q 
τ	

φ|E = const 
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TAS + spin-echo 

The sophisticated case – matching the slope of a dispersion ω(q)  

φ = const 

ΔE = const k 

B 

we need to manipulate the phase fields around  ki, kf and 
project them onto R(Q,ω) 

•  rotate B with respect to ki, kf 
•  incline the field boundary with respect to ki, kf  

difficult with solenoids ... 

... look for a more flexible technique! 
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IN20 – TASSE (1998 – 2015) 
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IN20 TASSE setup 
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•  horizontally focussing Heusler 
monochromator & analyzer 

•  kf = 4.1 Å-1, PG filter 

•  74Ge (96.8%) single crystal; 
volume 7 cm3 

•  Q-range:  1 - 7 Å-1 
•  ΔE range (TAS):     0 - 40 meV 

•  OSF superconducting solenoids 
•  max. field integral  1 Tm 
•  Fourier times:   

kf = 2.662 Å-1  0.015 - 1.5 ns  
kf =  4.1 Å-1  0.002 - 0.4 ns 
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Neutron resonant spin echo (NRSE) 

•  fixed guide field B0 ≈ 100 G 
•  rotating RF field B1 ≈ 1 G with ω = ωL 

•  setup tuned for a π-flip 

Ŗ Within a coil, the neutron is subjected to a 
steady, strong field, B0, and a weak rf field 
B1cos(Zt) with a frequency Z = Z0 = J B0

– Typically, B0 ~ 100 G and B1 ~ 1 G

Ŗ In a frame rotating with frequency Z0, the neutron spin sees a constant field 
of magnitude B1

Ŗ The length of the coil region is chosen so that the neutron spin precesses 
around B1 thru an angle S.

Ŗ The neutron precession phase is:

The Principle of Neutron Resonant Spin Echo
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courtesy of R. Pynn, Indiana University 
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Neutron resonant spin echo (NRSE) 

spin-echo condition  

(lAB + d)/vn = (lCD + d)/v'n 

NRSE spectrometer
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Neutron Spin Phases in an NRSE Spectrometer* 
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* Courtesy of S. Longeville
courtesy of R. Pynn, Indiana University 

 S. Longeville, LLB Saclay 

R. Gähler, R. Golub, T. Keller, 
Physica B 180&181 (1992) 899 

rotating RF field 
A A' D D' 
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Neutron resonant spin echo (NRSE) 
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The NRSE-TAS spectrometer at the FRM-2
T. Keller1,∗, K. Habicht2, H. Klann1, M. Ohl1, H. Schneider1, B. Keimer1

1 Max Planck Institute for Solid State Research, Stuttgart, Germany
2 BENSC HMI Berlin, Germany
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Abstract. The combination of zero-field spin-echo and triple-
axis spectroscopy at a high-flux spectrometer under construc-
tion at the FRM-2 will allow the determination of the en-
ergies and lifetimes of dispersive excitations, including both
phonons and magnons, over the entire Brillouin zone. We dis-
cuss the technical design of the instrument and give examples
of the envisioned scientific applications.

PACS: 78.70.N; 29.30.H

There is considerable interest in measuring the natural
linewidths of phonons and magnetic excitations over the en-
tire Brillouin zone. This is not possible with conventional
neutron or optical spectrometers, which either lack in reso-
lution or in the accessible Q-range. Neutron Spin Echo (NSE)
spectrometers provide the required high energy resolution in
the µeV range, but a special focussing technique introduced
by Mezei [1] (tilted coil technique) is required for the meas-
urement of linewidths of dispersive excitations: by tilting the
boundaries of the precession fields relative to the neutron
beam the spin echo resolution function is tuned to the slope
of the dispersion curve.

On conventional NSE instruments, stray fields at the coil
boundaries restrict the maximum field tilt angles to values
of about 10◦, which allows focusing of phonons with small
group velocity, such as those in superfluid 4He [3]. For typ-
ical acoustic phonons in solids, rather large tilt angles up to
50◦ are necessary. These large angles are rather easily ob-
tained with the Neutron Resonance Spin Echo (NRSE) tech-
nique [2], which uses small radio frequency flippers with
precisely flat surfaces instead of large DC coils to define the
effective precession regions. Tilting of the field boundaries
is achieved by rotating the RF coils. The influence on the
beam polarization by rotating the coils is a rather smooth
function, which does not depend on the scattering angle and
thus may be determined in direct beam experiments. This sig-
nificantly facilitates spectrometer calibration, as there is no

∗Corresponding author.
(Fax: +49-89/2891-3776, E-mail: keller@kmr.mpi-stuttgart.mpg.de)

standard sample for phonons (a phonon with zero width, vari-
able slope and zero curvature). The flight paths of the NRSE
spectrometer are shielded by mumetal tubes which eliminate
both crosstalk between the spectrometer arms and sensitivity
to external fields.

For the FRM2 we designed a triple axis NRSE instru-
ment optimized for high resolution spectrometry (Fig. 1).
It will open a new field of solid state research, which is
accessible to other spectroscopic methods only in special
and very limited cases. As the expected scientific inter-
est for such an instrument is predominantly in the area
of excitations with high energies (1–100 meV, resolution
1–100 µeV), the instrument is placed on a thermal beam
at the end of a polarizing neutron guide with a critical
wavelength λc = 0.8 Å and a transmission of 70% one spin
component). In combination with a PG monochromator, the
polarizing guide clearly outperforms Heusler monochroma-
tors (factor of 3 at 2 Å) and 3He spin filters. The curved

Fig. 1. NRSE-TAS setup at the FRM-2

TRISP at FRM-II Munich 
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I ¼ dðB1 þ B2 þ B4 þ B5Þ þ SB3 þ y0ðB1 % B2 þ B4 % B5Þ
þ
!
ðDþ y0ÞðB1 % B2 þ B4 % B5Þ

þ ðSþ 2dÞðB4 % B5Þ
"
’þOð’2Þ: ð8Þ

It is evident that the magnetic field integral I depends on the
scattering position, y0, at the sample and the deviation angle,
’, of the neutron trajectory. The dependence on y0 may be
eliminated, to the first order, by configuring the magnetic
fields to satisfy

B1 % B2 þ B4 % B5 ¼ 0: ð9Þ

Thus I can be written as a linear function of the divergence
angle ’ to lowest order, as follows:

I ¼ 2dðB1 þ B4Þ þ SB3 þ ’ðSþ 2dÞðB4 % B5Þ þOð’2Þ: ð10Þ

Considering the complete spin echo spectrometer as shown in
Fig. 4, the accumulated Larmor phase for each arm can then
be written as

!i;f ¼
!m

h- ki;f

Ii;f: ð11Þ

The deviation of a neutron wavevector from its average value,
"ki;f , can be written in terms of components parallel and
perpendicular to the average wavevector kI;F, i.e.
"ki;f ¼ ð"kki;f;"k?i;fÞ. Thus, to lowest order, the change in the
Larmor phases that results from changes "ki and "kf in the
incident and final neutron wavevectors takes the form

"!i;f ¼
d!ki;f
dki;f

"kki;f þ
d!?i;f
d’i;f

"k?i;f
ki;f

: ð12Þ

!ki;f and !?i;f are the Larmor phase contributions from wave-
vector components parallel and perpendicular to the average
wavevectors in each arm of the spectrometer, and the angular
deviations of the neutron trajectories in each arm ’i;f are
related to the deviation of the neutron wavevectors by
’i;f ¼ "k?i;f=ki;f . From equations (6) and (8), we find

!ki;f ¼
!m

h- ki;f

½2dðBI;F
1 þ BI;F

4 Þ þ SBI;F
3 ';

!?i;f ¼
!m

h- ki;f

’i;fðSþ 2dÞðBI;F
4 % BI;F

5 Þ:
ð13Þ

Finally, combining equations (13) and (12) and cross matching
with equation (3) provides the following link between the
magnetic field configuration of the spectrometer and the
vectors NI;F for the average wavevectors:

NI;F ¼
 

d!kI;F
dkI;F

;
I

kI;F

d!?I;F
d’I;F

!

¼ !m

h- k2
I;F

( %½2dðBI;F
1 þ BI;F

4 Þ þ SBI;F
3 '; ðSþ 2dÞðBI;F

4 % BI;F
5 Þ

# $
:ð14Þ

This equations shows that the architecture in Fig. 4 can be
used to encode wavevector components parallel and perpen-
dicular to the average wavevector, which is the fundamental
requirement for phonon focusing (Pynn, 1978). The vectors
NI;F are analogous to the normal vectors of the field bound-
aries in the NRSE technique. However, instead of physically
tilting the coils to achieve equation (4), the arrangement in
Fig. 4 allows NI;F to be tuned electromagnetically by adjusting
the magnetic fields in either the Wollaston prisms or the
central rectangular field region, while maintaining the condi-
tion defined by equation (9) as we describe below.

5. Tuning of the spectrometer

For the NRSE method, the maximum tilt angle "I;F is )70*

(Klimko, 2007) because of dimensional limitations imposed by
cooling requirements and the magnetic field homogeneity of
the coils. For the method described here, the values of "I;F are
determined by the ratio between the perpendicular and
parallel components of the NI;F vectors as follows, just as they
are for the NRSE method:

tan "I;F ¼
N?I;F
NkI;F
¼ % ðSþ 2dÞðBI;F

4 % BI;F
5 Þ

2dðBI;F
1 þ BI;F

4 Þ þ SBI;F
3

: ð15Þ

Since no physical tilting is involved, we refer to "I;F as the
effective tilting angles.

To tune "I;F to particular values and simultaneously main-
tain the conditions of the field configuration in equation (9), a
practical solution is to connect BI;F

1 and BI;F
5 in series to a single

DC power supply and to connect BI;F
2 , BI;F

3 and BI;F
4 in series to

another supply. In the following analysis, we assume that this
method will set BI;F

1 ¼ BI;F
5 and BI;F

2 ¼ BI;F
3 ¼ BI;F

4 and thereby
satisfy equation (9), but the tuning can
also be accomplished even if these
conditions are not strictly satisfied. By
way of example, the effective tilting
angle "I;F for an incident neutron beam
with kI = 1.7 Å%1 is shown in Fig. 5. For
the newly developed superconducting
Wollaston prism (Li et al., 2014), we
have achieved a maximum field of
500 G (1 G = 1 ( 10%4 T), although
simulations indicate that our design
should be able to achieve 1200 G
without generating a field of sufficient
magnitude perpendicular to the HTS
films to risk quenching them (Böhmer

research papers

1852 Li and Pynn + A novel neutron spin echo technique J. Appl. Cryst. (2014). 47, 1849–1854

Figure 4
The instrumental setup of the proposed spin echo spectrometer using Wollaston prisms.
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Tilted fields 

Wollaston prisms 

Li F., Pynn R., J.Appl.Cryst. 47 (2014) 1849 

et al., 1997). To be conservative, we have used 500 G as the
maximum field for both the Wollaston prisms and the central
field region in the calculation presented here. For the
dimension of the spectrometer we chose S = 0.2 m, d = 0.05 m
as a practical demonstration, owing to the restriction of the
cooling capacity of the closed-cycle refrigerator and the size of
HTS films available. The corresponding spin echo time for
zero phonon group velocity (rrr! ¼ 0), where the corre-
sponding tilting angle is zero, is given by

! ¼ "m2

h- 2k3
I

½2dðBI
1 þ BI

4Þ þ SBI
3&

2 þ ½ðSþ 2dÞðBI
4 ' BI

5Þ&
2

n o1=2

:

ð16Þ

This equation gives a maximum spin echo time of (200 ps
(corresponding to an energy resolution of (3 meV) with all of
the fields set to 500 G at our chosen value of kI = 1.7 Å'1. The
actual value of spin echo time achieved in a given experiment
will depend on the magnetic field configuration, the incident
neutron energy and the group velocity of the phonon
measured. In general, the achievable spin echo time decreases
for tilt angles different from zero.

When BI;F
1 and BI;F

5 are tuned to be zero, the geometry of the
magnetic field region is a parallelogram with an inclination
angle of 45), which is analogous to a tilting angle of 45) in the
NRSE method. When BI;F

1 and BI;F
5 are tuned to be the same as

BI;F
2 ;BI;F

3 and BI;F
4 , the field regions will compose a long

rectangular field region, which is analogous to a tilting angle of
0) in the NRSE method. By adjusting BI;F

3 and BI;F
5 following

the path C–B–O in Fig. 5, the effective tilting angle #i;f can be
tuned continuously from a negative angle ('85)) to zero. By
further tuning BI;F

3 following the path O–A, a positive effective
tilting angle up to 85) can be achieved.

Considering a more aggressive situation where the field
intensity can be increased to the point where fields perpen-

dicular to the HTS films in the device approach a conservative
limit for the lower critical field Hc1 (Böhmer et al., 1997)
(120 G), a maximum field of 1200 G, according to our simu-
lation, can be achieved for both Wollaston prisms and the
central field region, which means the resultant spin echo time
can be tripled. If there is a desire to achieve an even larger
value of the spin echo time, the length of the central field
region could also be increased, provided there is sufficient
refrigeration capacity.

6. Conclusion

We have described the principles of a new technology to
implement neutron spin echo on a triple-axis neutron spec-
trometer so achieve high-resolution measurements of phonon
linewidths. The method is based on devices that have already
been demonstrated in another context. The method uses high-
temperature superconducting films to partition regions of
uniform magnetic field, and the phonon focusing condition is
achieved by an appropriate choice of magnetic fields in these
two triangular coil pairs. For the Wollaston prism described by
Li et al. (2014), both triangular pairs carry the same current
and produce fields in opposite directions such that one pair
serves as the flux return path for the other one. For the
situation where the two triangular pairs carry different
currents, each pair itself can form a complete flux return path.
In this case, the magnetic field produced by the energized pair
in its non-energized neighbor is less than 0.03% of the field in
the energized pair. This stray field can be compensated by
tuning the magnetic fields. Because of the energy stored in
each triangular field region, the consequent magnetic force on
each HTS films is less than 4 N at 500 G, which is negligible.
The method uses no moving parts and should perform as well
as or better than the traditional NRSE method. For the latter,
as the tilting angle of the RF coils increases, the measured
neutron polarization decreases owing to the homogeneity of
the NRSE coils. Furthermore, neutron absorption is relatively
large for the NRSE method but is much smaller for the HTS
device implemented with yttrium barium copper oxide
(YBCO) films.

By eliminating physical constraints through the use of a
combination of rectangular and triangular DC field regions,
the proposed spectrometer extends the maximum achievable
tilting angle from the *70) available to NRSE to *85), with
spin echo times comparable to current implementations of the
NRSE method. The increase of the effective tilt angle means
that phonon dispersion surfaces with larger group velocities
can be measured. Our newly developed Wollaston prism (Li et
al., 2014) shows a high spin transport efficiency across the
device ((98.5%), independent of neutron wavelength and
energizing current. Thus we expect that the neutron polar-
ization will remain high, even when large effective tilt angles
and long neutron wavelengths are used. Since the HTS films
used in our Wollaston prisms are made by depositing a thin
film of YBCO on a 0.5 mm-thick sapphire substrate, the 12
films involved in the phonon focusing equipment allow a high
neutron transmission (>80%)

research papers

J. Appl. Cryst. (2014). 47, 1849–1854 Li and Pynn + A novel neutron spin echo technique 1853

Figure 5
The angle #I;F calculated as a function of BI;F

3 and BI;F
5 . The red dashed

lines represent the proposed path of tuning as described in the text for a
relatively large spin echo time. The dimensions shown in the figure have
been set to S = 0.2 m, d = 0.05 m.

•  YBCO films (30 K)  
•  B1 = B5 , B2 = B3= B4 ≈ 500 G 
•  S = 20 cm, d = 5 cm 
•  φmax = 85º 
•  τmax ≈ 200 ps 
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Spin-echo pattern 
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Ge lattice dynamics 

•  group IV semiconductor 
•  diamond structure (2 atoms/unit cell) 
•  nontrivial lattice dynamics 
•  negative volume expansion 

• disorder effects:  
! Ge isotopes (M. Cardona) 
! Si-Ge alloys (E. Courtens) 

•  large perfect crystals available 

Phonon dispersion 
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74Ge: Γ-point phonon width 
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TASSE - Ge shifts 
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74Ge: X-point frequency shifts 
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74Ge: X-point phonon width 
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74Ge: X-point phonon width 
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74Ge: X-point phonon width 
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74Ge: X-point phonon width 

0

20

40

60

80

100

120

0 10 20 30 40

Ge - phonon DOS

g(
E)

E [meV]

X 

Ab initio calculations: 

•  lowest (3rd) order in amplitude 
•  sum processes negligible 
•  difference processes T > 50 K 



®

© J. Kulda ILL 2016 25 

TASSE vers. high resolution TAS 
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Anomalous thermal decoherence in a quantum magnet measured
with neutron spin echo spectroscopy
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The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO3)2·2.5D2O, a model
material for a one-dimensional bond alternating Heisenberg chain, using the high resolution neutron-resonance
spin echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase
sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian,
opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard linewidth
measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain
without convolution with the resolution function of the background spectrometer. This application of NRSE
is very promising and establishes a basis for further experiments on different systems, since the results for
Cu(NO3)2·2.5D2O are applicable to a broad range of quantum systems.

DOI: 10.1103/PhysRevB.93.134404

I. INTRODUCTION

Thermal decoherence of quantum states is of wide-reaching
importance for the application of quantum materials. The
generic scenario encountered in condensed matter is due to
quasiparticle interactions associated with exponential loss of
coherence in the time domain and manifests in a symmetric
Lorentzian-type line broadening in energy [1–4]. According
to the standard quasiparticle interaction theory the principal
effect of the temperature is to increase this Lorentzian
linewidth corresponding to shortening the lifetime by more
frequent collisions. Such behavior is accessible in magnetic
systems [5,6] where even the appearance of universal linewidth
behavior for chain systems has been proposed [7–9]. However,
in dimensionally constrained systems and those with hard core
interactions it can be expected that strongly correlated effects
should become evident and these will modify the decoherence
in time away from an exponential form.

Experimental studies on Cu(NO3)2 · D2O (copper nitrate),
a model material for a one-dimensional (1D) bond alternating
Heisenberg chain (AHC), have detected the development of
non-Lorenzian line shapes using inelastic neutron scattering
(INS) [10]. Nonperturbative calculations which take into
account the cumulative effect of quantum interference effects
in collisions have predicted such nonexponential decoherence
in the time domain and their non-Lorentzian energy line shapes
[11,12]. Furthermore, the direct application to the dimerized
chain [13,14] provides approximate agreement with the tem-
perature dependence observed experimentally. Subsequently
non-Lorentzian-type line broadening has been observed in a

*Present address: École Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland and Paul Scherrer Institute, 5232 Villigen PSI,
Switzerland; felix.groitl@psi.ch

†Present address: Paul Scherrer Institute, 5232 Villigen PSI,
Switzerland.

‡Present address: Oak Ridge National Laboratory, Oak Ridge, TN
37831, USA.

three-dimensional (3D) dimerized magnet Sr3Cr2O8, and it
has been argued that these may be found in a broad range of
quantum systems [10,15].

In the present work we explore the neutron spin echo
triple-axis technique (NRSE-TAS) [19,20] as an alternative
approach to the study of line shapes and widths of spin
excitations. The particular advantage of the neutron spin
echo method is its capability to directly probe correlations
in the time domain, the natural dimension for such processes.
NRSE-TAS gives access to time scales which correspond to
features in energy in the µeV range and so is able to probe
slow physical processes inaccessible to conventional INS. As
a second advantage, background intensity has no influence on
the linewidth or asymmetry due to the fact that the background
with its broad distribution in energy is depolarized and does not
contribute to the measured NRSE signal. This is in contrast
to conventional INS (ToF and TAS), where inaccuracies in
background subtraction affects both the linewidth and the
asymmetry. As a third advantage, the deconvolution of the
data with the instrument resolution function necessary in
conventional INS reduces to a simple normalization of the
raw data in the case of spin echo.

The quantity measured by neutron spin echo is the polariza-
tion of the neutron beam P = ⟨σx⟩, defined as the expectation
value of the x component of the neutron spin operator.
An intuitive picture is given in terms of two correlation
volumes associated with spin up and spin down spin states
[16,17] (Fig. 1). The correlation volumes are finite spatial
regions with a well-defined phase correlation of the neutron
wave function. The longitudinal and transverse widths of
the correlation volume are the inverse of the divergence and
monochromaticity of the neutron beam, respectively. Inside the
precession regions, the kinetic energies of the spin up and spin
down states split [21] and the two correlation volumes acquire
a relative time delay τ (spin echo time). The spin states then
scatter at the sample at times t and t + τ , where τ is identical
to the van-Hove correlation time [18]. After cancellation of the
time delay in a second inverted precession region, the scattered

2469-9950/2016/93(13)/134404(6) 134404-1 ©2016 American Physical Society
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FIG. 4. (a) Asymmetric S(ω) according to Eq. (4) with parame-
ters "[µeV]/α/γ = 30/0.2/0.018 (blue) and symmetric Lorentzian
2/0/0 (red). (b) Calculated polarization P (τ,T C4 = 0) using the
model described in the text.

The usual way to model NRSE data consists in a two-step
fitting process. First, the magnitude of the polarization P and
the phase T C40 for one τ value are determined by fitting
Eq. (3) to the raw data (Fig. 2, inset). Then the model S(ω) is
fitted to |P (τ )| using Eq. (2). The phase T C40 in Eq. (3) is
usually neglected, as it contains only a trivial factor ω0τ . In
the present case with asymmetric linewidths, T C40 also carries
information about the asymmetry, and thus was included in the
analysis. Besides the structure factor S(ω), and the spectral
width &ki of the incident beam, the aforementioned π spin
flips and the TAS energy resolution also have to be modeled
in the data analysis, but it proves difficult to implement all
these factors in an analytical expression. In a first attempt we
calculated the polarization P (τ,T C4,ω0,",α,γ ,ki,&ki) using
a Monte Carlo (MC) ray tracing simulation of the spectrometer,
which tracks the spin phase of individual neutrons running
through the precession regions and spectrometer. The TAS was
simplified by defining a Gaussian spectrum for the incident
neutrons (&ki/ki = 0.015 (FWHM)), and a Gaussian proba-
bility distribution of energy transfers ω (0.3 meV FWHM). The
fitting procedure based on this simulation took an excessively
long time to converge, as the minimization algorithm of the
fitting function [43] is disturbed by the statistical noise of
the MC algorithm. Finally, we simplified the model by using
discrete equally spaced values instead of random numbers to
select the ki and ω.

The model P (τ ) is shown in Fig. 4 for a narrow symmetric
Lorentzian and a broad asymmetric line. P shows fast
oscillations for τ < 10 ps arising from an interference of the
spins flipped by fluctuations My and Mz, which were assumed
to contribute with equal weight. In the chosen antiparallel
B0 configuration the My component does not obey the echo
condition and is rapidly damped. In the present experiment
with τmin = 14.5 ps, these fast interference oscillations are
not visible. The weight of the component My determines the
constant factor P0 in Eq. (3), where for isotropic fluctuations
we expect P0 = 0.5, which is in good agreement with P0 =
0.47(3) obtained for the present data. The phase shift between
the two curves in Fig. 4(b) is in the order of a few 10◦ and is
similar to the 3 K data in Fig. 7.

IV. RESULTS AND DISCUSSION

Figure 5 shows the data and the model I (τ,T C4) for
T = 0.5 K. The data were collected by scanning the length

FIG. 5. Data (spheres) I (τ,T C4) for T = 0.5 K. The ranges of
the individual scans for different spin echo times τ are projected
to the bottom, while the intensity is projected to the side. The
phenomenological model described in the text is fitted simultaneously
to all scans of one temperature set. Hence, the phase, which carries
additional information about the asymmetry, is considered. The fit
of the model is shown as a semitransparent surface through all data
points. (b) The resulting fit parameters for the different temperature
sets correspond to the plotted S(ω). With increasing temperature a
clear asymmetry develops.

T C4 of the second precession region for a set of spin echo
times τ . The structure factors S(ω) resulting from the fit
show a clear asymmetry increasing with T . The resulting
parameters ", α, and γ (Eq. (4)) are plotted in Fig. 6 and
are compared to the parameters obtained for the ToF data
fitted with the same model, where for both the spin echo and
the ToF data γ is calculated from " and α. The agreement
between the two methods is surprisingly good, although the
analysis of the ToF data included subtraction of a sloping
background and deconvolution with a Gaussian resolution
function (σ = 0.017 meV). At first sight, the quality of the
spin echo data looks worse than ToF with larger error bars and
thus an increased scatter. On the other hand, the intrinsic width
" and the asymmetry α are obtained by spin echo method
without including assumptions about the background or the
spectrometer resolution. The larger error bars on the spin echo
data are due to the low count rates, as in spin echo the losses
in the neutron polarizer and analyzer cost about 2/3 of the
intensity, and additionally the polarization and thus the signal
is reduced by a factor of 2 due to the π flips of the neutron
spins upon scattering.

In the following paragraphs the phase of the polarization
resulting from our model (Fig. 4) is discussed. For a symmetric
S(ω), a phase shift &φ at a constant τ occurs only if the peak
ω0 of the line shifts, but is otherwise independent of the width
or shape of this line:

&φsym = &ω0 × τ. (5)
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FIG. 6. Parameters resulting from a fit of the phenomenological model described in the text. This model was applied to the spin echo data
(black) and the ToF data from Ref. [10] (red).

Equation (5) is frequently used to determine the T dependence
of the excitation energy ω0(T ). With τ = 100 ps and a
typical statistical error in the phase of a few degrees, energy
shifts !#ω0 on the order of 1 µeV can be detected without
knowledge of the line shape and width [44].

This powerful method for measuring the renormalization of
ω0 fails in the present case with a T -dependent asymmetry of
the line shape. The phase shift #φ(τ,T ) = φ(τ,T ) − φ(τ,T =
0.5) between the polarization curves P (τ,T C4 = 0) (see
Fig. 4) for the parameters obtained from the fits of the spin
echo data from Fig. 5 are plotted in Fig. 7. Here the phase of
the lowest temperature T = 0.5 K was taken as a reference.
The clear nonlinear evolution of the phase shift is a direct
consequence of the nonlinear line shapes. This also means
that applying Eq. (5) to nonsymmetric line shapes leads to
meaningless results for the energy shift #ω. The relation
between #φ(τ ) and the asymmetry depends on the specific
line shape and can in general only be calculated numerically
from Eq. (2).

To further investigate the breakdown of the simple relation
in Eq. (5), we measured #φ(T ,τ ) for two values of τ , 24
and 47.5 ps, again such as all previous measurements at the
minimum of the dispersion curve at Q = (1.11 0 0.855). The
data #φ vs T are displayed as black dots in Fig. 8. The phase
shift resulting from our model for the parameters of Fig. 6
shows good agreement with the data within statistical accuracy.
In contrast, the phase shift calculated from Eq. (5), where #ω
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FIG. 7. Phase shift #φ(τ,T ) of the polarization (Fig. 4) relative
to T = 0.5 K.

was taken as the shift of the center of gravity of the asymmetric
line with parameters from Fig. 6, clearly disagrees with the
experimental data.

The observation that the phase of the polarization obtained
from asymmetric line shapes with a T -dependent asymmetry
is not proportional to #ω is one of the main results of this
paper. Thus in this case application of Eq. (5) to calculate #ω
will lead to wrong results. On the other hand, the phase carries
information about the line shape and thus should be included
in the fit determining S(ω).

V. CONCLUSIONS

An application of the NRSE method dedicated to line shape
analysis on dispersive excitations has been presented opening
up opportunities to look at strongly correlated quantum
systems and extend beyond the more conventional systems
investigated so far. This method was applied to the temperature
dependent asymmetric line broadening present in the 1D
bond alternating Heisenberg chain material Cu(NO3)2 · D2O.
The results clearly demonstrate that the NRSE approach
has the potential to detect anomalous effects due to strong
correlations, which arise from the dimensional constraint
of the system and hard core interactions of the excited
states [10]. The particular advantage is the direct access to
decoherence in the time domain and therefore the method
complements the frequency measurements using conventional
neutron spectroscopy. Furthermore, the NRSE method does
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FIG. 8. Phase of the polarization vs T (black) from phase sen-
sitive measurements at the dispersion minimum Q = (1.11 0 0.855)
r.l.u., E = 0.385 meV for spin echo time τ = 24.01 ps (left) and
47.57 ps (right). The data are compared to the phase shift calculated
from the model discussed in the text (red) and from Eq. (5) (green).
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!ω0 = 0.385 meV, where the intensity is maximized. The
copper nitrate crystal was aligned in the (h 0 l) scattering
plane in a closed cycle 3He cryostat. TRISP was operated
with a graphite (0 0 2) monochromator and a Heusler (1 1 1)
analyzer, with scattering sense SM = −1, SS = −1, SA = 1
at the monochromator, sample, and analyzer, respectively
(−1 is clockwise). With ki = 1.7 Å

−1
, the TAS energy

resolution in this configuration is 0.30 meV (vanadium width,
FWHM), which was in the present case sufficient to suppress
the elastic background to about 2% of the signal amplitude.
The frequencies applied to the coils C1-C4 (see Fig. 2) were
tuned according to the spin echo tuning conditions Eqs. (4)
and (5) in Ref. [20].

At TRISP, the polarization of the neutron beam (Eq. (2))
is determined by scanning the coil C4 along the beam
direction, such that the length of the second precession region
differs by T C4 from the first one. This leads to a sinusoidal
variation of the count rate I (T C4), where one period "T C4 =
!kf /(mνeff) corresponds to a 2π rotation of the neutron spins.
νeff is the effective neutron Larmor frequency [39] and m is
the neutron mass. This scan is repeated for different values of
τ , with the present parameters τ [ps] = 0.145νeff [kHz]. The
polarization is the contrast of the modulated count rate

I (τ,T C4) = I0

[
1 + P (τ ) cos

(
2π [T C4 − T C40(τ )]

"T C4(τ )

)]
,

(3)

where I0 is the mean intensity corresponding to P = 0, T C40
is a phase offset.

One complication met in spin echo experiments on spin
excitations arises from the π spin flips of the neutron spins
during the scattering process (Fig. 3). In spin echo, the

FIG. 3. Spin flip processes at the sample. The spins of the incident
beam are spread within the horizontal xy plane, where x ∥ Q, z

is vertical. Only magnetic fluctuations My,Mz ⊥ Q contribute to
the scattering cross section. The spin s1 with Larmor phase φ1

of the incident neutron is flipped to s2 or s3 by My or Mz, respectively.
The corresponding phases are φ2 = π − φ1 and φ3 = π + φ1.

neutron spins accumulate different Larmor phases in the first
precession region due the spread in ki , which is "ki/ki ≃
0.015 with ki = 1.7 Å in the present experiment. This spread
of the phase is proportional to B0, and typically is much
larger than 2π at the highest fields. Thus at the sample, the
neutron spin phases are spread within a plane perpendicular
to B0, the precession plane. At TRISP, B0 is vertical, and the
precession plane is horizontal. This situation is different to
1D polarization analysis [40], where at the sample all neutron
spins are aligned in the same direction, parallel (or antiparallel)
to a guide field. If no spin flip occurs during scattering in the
spin echo spectrometer (nuclear scattering), the polarization is
recovered in the second precession region with inverted field
direction −B0 and forms the so called spin echo [23]. For the
spin flip scattering in spin echo experiments, the two cases of
spin fluctuations My and Mz have to be distinguished (Fig 3):
Mz adds a phase π to the neutron spin phase, whereas My

inverts the sign of the neutron spin phase, and thus effectively
inverts the sign of the first precession field B0. Thus, to fulfill
the echo condition for Mz (My) fluctuations, the polarity of
the fields must be antiparallel (parallel) [41]. If both types of
spin fluctuations contribute with equal amplitudes, it is better
to choose the parallel field configuration, as in this case nuclear
nonspin flip background is dephased and will not contribute
to the polarization. In practice, the magnetic structure and
the fluctuations are often not exactly known or obscured
by the formation of domains. Thus at TRISP the suitable
B0 configuration (parallel or antiparallel) is experimentally
determined. In the present case, both My and Mz were
expected to contribute equally to the aforementioned π flips,
but the antiparallel configuration showed better polarization
close to the expected P (τ = 0) = 0.5 and therefore was
chosen for the subsequent measurements.

Spin echo data were collected at four temperatures (0.5, 2,
2.5, and 3 K) below the characteristic activation temperature of
the gap (T = 4.5 K), for τ in the range 14.5 to 112.6 ps. Typical
count rates were 10 and 5.6/min at 0.5 and 3 K, respectively.
A background rate of 1/min was subtracted from all scans.

III. DATA ANALYSIS

A phenomenological function describing an asymmetric
modified Lorentzian line shape has been used for the analysis
of magnon line shapes measured by ToF-INS [10]:

S(ω) = 1
π

1
1 + [ω/' − α(ω/')2 + γ (ω/')3]2

. (4)

Here the argument of the usual Lorentzian is replaced by
a polynomial that includes two parameters to model the
asymmetry, an asymmetry term α(ω/')2 and a damping term
γ (ω/')3. A symmetric Lorentzian is obtained for α,γ = 0.
The function provides reasonable results for fitting the ToF
data in the ω space, but tends to give unphysical solutions with
several peaks at the zeros of the polynomial when applied
to the spin echo data. To avoid these multiple peaks, we
keep ' and α as independent variables, and calculate γ , such
that the second derivative of ∂2S(ω)/∂ω2 has only two zeros,
defining the inflection points of the peak. Other representations
of asymmetric Lorentzians [42] with only one asymmetry
parameter gave no satisfactory description of the ToF data.
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FIG. 7. (a) Basic principles for neutron spin echo with schematics
of the experimental setup. The magnetic guide field B directions
are clearly marked. (b) Schematic diagram for the neutron Larmor
diffraction measurements. For NRSE, the neutron precession direc-
tion in L1 is opposite to that of L2. In neutron Larmor diffraction, the
neutron precession directions are same in L1 and L2.

measured. The effects of uniaxial pressure on tetragonal-
to-orthorhombic structural transition and uniaxial pressure
induced lattice orthorhombicity can be probed directly via
measuring temperature and pressure dependence of the (4,0,0)
and (0,4,0) reflections by neutron Larmor diffraction. For
magnetic measurements, the BaFe1.97Ni0.03As2 sample was
mounted in the [1,1,2] × [1,−1,0] scattering plane, where
both the (1,0,1) and (0,1,1) magnetic Bragg peaks can be
reached [41].

2. Neutron resonance spin-echo measurements

Neutron spin-echo (NSE) technique has been demon-
strated to be an effective method to measure the slow
dynamics (quasielastic scattering) with an extremely high-
energy resolution (∼1 µeV or even to ∼1 neV) [46]. By
combining triple axis spectrometer and neutron resonance
spin-echo (NRSE) techniques, the TRISP spectrometer at the
Forschungsneutronenquelle Heinz Maier-Leibnitz (MLZ) is
capable of measuring the lifetime of excitations with an energy
resolution !E ∼ 1 µeV in the range of about 1–200 µeV [67].

Compared with typical neutron-scattering experiments
where S(Q,ω) (E = !ω) is usually measured, neutron spin-
echo measures I (Q,τNSE) or P (Q,τNSE), where P is the
polarization of the scattered neutrons, which is the time Fourier
transform of the S(Q,ω) and thus provides direct information
of S(Q,ω) such as energy linewidth (lifetime) and intensity
[48,68].

The basic principle of NSE can be understood in a simplified
picture as shown in Fig. 7(a). We assume neutrons polarized
along the y direction with a velocity v1 enter the first

arm of NSE spectrometer with a constant magnetic field B
[Fig. 7(a)]. The precession angle in the first arm (L1) is then
φ1 = ωLt = γ |B|L1/v1, where γ = 2µN/! = 2.916 kHz/G
is the gyromagnetic ratio of neutron, L1 is the length of the
first neutron guide arm, and t is the time for neutron to travel
through the first arm. After interactions with the sample, some
neutrons are scattered into different energy with velocity v2.
In the second arm (L2), the neutron spin will precess along the
opposite direction, generating −φ2 = −ωLL2/v2. Assuming
L1 = L2 = L and v2 = v1 + δv, δv ≪ v1, the net phase after
passing through both field regions will be φ = ωLL

v2
1

δv. Since

neutron energy transfer is !ω = 1
2m(v2

2 − v2
1) ≈ mv1δv, the

net phase can be written as

φ =
(

!ωLL

mv3
1

)
ω ≡ ωτNSE, (A1)

where τNSE is defined as

τNSE =
(

!ωLL

mv3
1

)
= 1.863 × 10−16B(G)L(cm)λ3(Å) (A2)

Note τNSE is not a physical time but a quantity determined by
specific parameters of the spectrometer, with the dimension of
time.

The polarization along y direction of the scattered neu-
trons can be analyzed and detected [Fig. 7(a)]. The average
polarization ⟨σy⟩ for neutrons with energy transfer !ω is

⟨σy⟩ = ⟨cosφ⟩ =
∫

dωS(Q,ω)cosωτNSE. (A3)

Thus ⟨σy⟩ is the cosine Fourier transform of S(Q,ω) for ω and
has been shown equal to the intermediate scattering function
I (Q,τ ). Therefore, the τNSE dependent polarization P (τ ), that
is, I (Q,τ ), provide direct information about S(Q,ω) [48].

In the NRSE, the precession fields and spin flippers are
replaced by four short bootstrap rf spin flipper coils [C1–C4
in Fig. 7(b)], which can improve the energy resolution by a
factor of 4 compared with the NSE with the same B and L.
The neutrons only precess in bootstrap while keep their spin
directions in L1 and L2. L2 can be tuned by translating the
flipper C4, by which the intensity with respect to the position
of C4, I (xc4), can be measured. For a fixed τ , the measured
intensity can be described as

I (xc4) = I0

2

[
1 + P cos

(
2π

!xc4
(xc4 − xc4,0)

)]
, (A4)

where P is the polarization, I0 is the averaged intensity of the
scattered beam, !xc4 is the period of the intensity modulation,
and xc4,0 is the reference position of C4.

The measurements of the P (τ ) for BaFe1.97Ni0.03As2 under
P ≈ 15 MPa are summarized in Fig. 8. Figure 8(a) shows
the intensity modulations for τ = 16.29 and 39.25 ps of
Q = (1,0,1) at T = 102 K. The polarizations are obtained
through fitting the data by Eq. (A4). The fitted P (τ ) for
different temperatures are plotted in Fig. 8(b). Assuming the
possible broadening in energy of the magnetic reflections is
caused by some slow dynamics (quasielastic scattering), the
corresponding S(ω) can be described by a simple Lorentzian:

S(ω) = 1
π

*

(ω − ω0)2 + *2
, (A5)

134519-9

ki 

kf Q q 
τ	

φ|E = const 



®

© J. Kulda ILL 2016 29 

Larmor coded diffraction 

BaFe2-xNixAs2 

•  orthorombic low-T phase detwinned 
by uniaxial pressure 

•  investigation of impact on phase 
transition 

Lu X. et al., Phys. Rev. B93 (2016) 134519 

XINGYE LU et al. PHYSICAL REVIEW B 93, 134519 (2016)

0

30

60

90

120

150

 T
em

pe
ra

tu
re

 (K
)

0.00 0.05 0.10 0.15 0.20 0.25

AF  Ort

SC
IC

TN

Tc
Ort PM Tet

TS

Nematic

a

b

L H

K

(400)

(040)

(101)

(a)

Detwinned

x = 0.03

x = 0.12 BaFe2-xNixAs2

(c)

(011)

P

Lb

x = 0

0

1

2

3

δ(
P)

 - 
δ(

P=
0)

 (1
0-3

)

x

0 40 80 120 160 200 240
Temperature (K)

280
(ρ

b-ρ
a)/(
ρ b +

ρ a)

(b)

 BaFe1.97Ni0.03As2

 BaFe2As2

 SrFe1.97Ni0.03As2

 BaFe1.88Ni0.12As2

P ~ 20 MPa

P ~ 20 MPa
 BaFe1.97Ni0.03As2

 BaFe2As2

 SrFe2As2

0.00

0.05

0.10

0.15

0.20

 SrFe1.97Ni0.03As2

FIG. 1. (a) The schematic electronic phase diagram of
BaFe2−xNixAs2 with arrows marking x = 0, 0.03, and 0.12 samples
described in the present study. The AF, PM, Ort, Tet, IC, SC are
antiferromagnetic, paramagnetic, orthorhombic, tetragonal, incom-
mensurate, and superconducting states, respectively [10]. The left
inset shows the direction of the applied uniaxial pressure (marked
by the vertical arrows) and the spin arrangements of Fe in the AF
ordered iron pnictides, where a and b are the orthorhombic axes. The
right inset shows the corresponding reciprocal lattice. All the marked
positions have AF or nuclear Bragg peaks for a twinned sample, while
the positions marked by open symbols have vanishing scattering
intensity for a detwinned sample. (b) Temperature dependence of
the resistivity anisotropy for BaFe2−xNixAs2 and SrFe2−xNixAs2

(x = 0,0.03) under P ≈ 20 MPa. (c) Summary of temperature
dependence of the uniaxial pressure induced lattice distortion at
P ≈ 20 MPa [δ(P ≈ 20 MPa) − δ(P = 0 MPa)] for BaFe2−xNixAs2

(x = 0,0.03,0.12) and SrFe1.97Ni0.03As2. The actual data for x =
0.03,0.12 are normalized to 20 PMa assuming a linear relationship
between uniaxial pressure and δ. Uniaxial pressure induced lattice
distortion vanishes rapidly below TN marked by the vertical dashed
lines in (b) and (c).

the microscopic origin of the in-plane resistivity anisotropy
in the paramagnetic state [12–15], it is important to establish
the effect of a uniaxial pressure on the magnetic and structural
phase transitions of BaFe2−xTxAs2 and SrFe2−xTxAs2, and
determine if the electronic anisotropy in the paramagnetic

tetragonal phase of iron pnictides is intrinsic [42,43], or
entirely due to the symmetry breaking uniaxial pressure
applied to the materials [44,45]. It is also important to deduce
what role the nature of the AF transition plays in the nematic
susceptibility [17,25,26,38] and how the latter depends on the
uniaxial pressure.

In this article, we use neutron resonance spin echo (NRSE)
[46,47] and Larmor diffraction [48] to study the effect
of uniaxial pressure on the structural and magnetic phase
transitions in electron-doped iron pnictides BaFe2−xNixAs2
with x = 0,0.03,0.12 [9,10] and SrFe1.97Ni0.03As2 [18],
and in the isovalently doped BaFe2(As0.7P0.3)2 [49]. While
the underdoped BaFe1.97Ni0.03As2 (TN = 109 K and Ts =
114 K) exhibits a second-order AF transition below Ts ,
SrFe1.97Ni0.03As2 has coupled first-order structural and mag-
netic phase transitions at TN = Ts ≈ 175 K [50]. The electron
overdoped BaFe1.88Ni0.12As2 (Tc = 18.6 K) and isovalently
doped BaFe2(As0.7P0.3)2 (Tc = 30 K) have a paramagnetic
tetragonal structure at all temperatures without static AF
order. Figure 1(c) summarizes the key experimental result
of the present work, where the temperature dependencies
of the uniaxial pressure induced orthorhombic lattice distor-
tions δ(P ≈ 20 MPa) − δ(P = 0 MPa) are determined using
neutron Larmor diffraction for BaFe2As2, BaFe1.97Ni0.03As2,
SrFe1.97Ni0.03As2, and BaFe1.88Ni0.12As2 [we defined the
lattice distortion δ = (a − b)/(a + b) with a and b being the
orthorhombic lattice parameters]. Remarkably, the magnitude
of our determined structural nematic susceptibility dδ/dP ∝
δ(P ) − δ(0) in Fig. 1(c) is comparable in all three materials
that have a structural phase transition, unlike the very different
values of the resistivity anisotropy displayed in Fig. 1(b).
Comparing these results with those of the elastoresistance
and nematic susceptibility obtained from transport [20,23,24]
and from elastic shear modulus/ultrasound spectroscopy
measurements [38,51,52], we conclude that the resistivity
anisotropy in the paramagnetic phase of the iron pnictides
depends sensitively on whether the underlying magnetic phase
transition is first or second order. We also find a strong coupling
between the uniaxial pressure induced lattice distortion and
the electronic nematic susceptibility, and have to be cautious
in directly relating resistivity anisotropy to the nematic order
parameter in the iron pnictides.

II. RESULTS

A. Experimental results

Our experiments were carried out using conventional
thermal triple-axis spectrometer PUMA and three axes spin-
echo spectrometer (TRISP) at the Forschungsneutronenquelle
Heinz Maier-Leibnitz (MLZ), Garching, Germany. The princi-
ples of NRSE and Larmor diffraction are described elsewhere
[50]. Single crystals of BaFe2−xNixAs2, SrFe2−xNixAs2,
and BaFe2(As0.7P0.3)2 were grown by self-flux method as
described before [49,53]. We define the momentum transfer
Q in the three-dimensional reciprocal space in Å−1 as Q =
Ha∗ + Kb∗ + Lc∗, where H , K , and L are Miller indices and
a∗ = â2π/a, b∗ = b̂2π/b, c∗ = ĉ2π/c with a ≈ b ≈ 5.6 Å,
and c = 12.96 Å for BaFe2−xNixAs2. In this notation, the
AF Bragg peaks should occur at (±1,0,L) (L = 1,3,5, . . . )

134519-2
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FIG. 3. Temperature dependence of full width at half maximum
(FWHM) of !d/d in several iron pnictides under different uniaxial
pressures obtained from neutron Larmor diffraction experiments [50].
(a) Temperature dependence of !d/d in FWHM for the (4,0,0) Bragg
reflection of BaFe2As2 at P = 0 and 20 MPa. The solid line above TN

is a fit using Curie-Wiess formalism [FWHM(T ) = A/(T − T1) + B,
where A, B, and T1 are fitting parameters]. (b) Similar data for
SrFe1.97Ni0.03As2. The vertical blue and red dashed lines in (a)
and (b) mark the TN of the sample at zero and finite pressure,
respectively. (c) Similar data for BaFe1.97Ni0.03As2, where the vertical
green and blue dashed lines mark TN and Ts , respectively, at zero
pressure. The open green and yellow squares mark measurements
of FWHM under zero pressure (fresh) at the (4,0,0) and (0,4,0)
Bragg peaks, respectively. The pink solid circles are identical
measurements under P ≈ 10 MPa uniaxial pressure on (4,0,0). The
solid green diamonds are data after uniaxial pressure is released. The
vertical red dashed line indicates the peak position of the FWHM
under P = 10 MPa. (d) Temperature dependence of FWHM in
!d/d for BaFe2(As0.7P0.3)2 at P = 0 MPa (solid green circles),
BaFe1.88Ni0.12As2 at P = 0 (solid green diamonds), and 14 MPa
(solid red circles).

agnetic tetragonal state without static AF order. The weak
temperature dependence of FHWM in these materials suggests
that the large temperature dependence of FWHM in AF
ordered BaFe2−xNixAs2 (x = 0,0.03) and SrFe1.97Ni0.03As2 is
due to a strong magnetoelastic coupling. Although application
of a P ≈ 14 MPa uniaxial pressure on BaFe1.88Ni0.12As2
increases the absolute value of FWHM, it is still weakly
temperature dependent [Fig. 3(d)].

To further demonstrate the impact of uniaxial pressure
on the tetragonal-to-orthorhombic structural transition in
BaFe2−xNixAs2 (x = 0,0.03,0.12) and SrFe1.97Ni0.03As2, we
compare in Fig. 4 temperature dependence of the lattice
parameters along the orthorhombic a and b axis directions
under zero and finite uniaxial pressure. We first discuss results
for BaFe2−xNixAs2 with x = 0 [Figs. 4(a) and 4(b)] and
0.03 [Figs. 4(c) and 4(d)]. At P = 0, the lattice parameters
have a = b at temperatures above Ts (tetragonal phase) and
decrease linearly with decreasing temperature [open diamonds
and hexagons in Figs. 4(a) and 4(c)]. Upon application of a
uniaxial pressure, the system becomes orthorhombic at all tem-
peratures and the orthorhombic structural transition becomes
a crossover [filled diamonds and hexagons in Figs. 4(a) and
4(c)]. Figures 4(b) and 4(d) show temperature dependence of
the lattice orthorhombicity δ = (a − b)/(a + b) at different
uniaxial pressures for x = 0, and 0.03, respectively. For
unpressured fresh samples (P = 0), and after the pressure has
been released, the tetragonal structure becomes orthorhombic
below Ts and the AF order below TN further enhances
the lattice orthorhombicity [5]. Upon applying the uniaxial
pressure P ≈ 10, 15, and 20 MPa, the temperature dependence
of the lattice orthorhombicity becomes remarkably similar
to that of the B2g elastoresistance and nematic susceptibil-
ity of BaFe2−xTxAs2 obtained from transport [23,24] and
elastic shear modulus/ultrasound spectroscopy measurements
[38,51,52], respectively.

B. Theoretical Ginzburg-Landau analysis

To understand the temperature dependence of the pressure-
induced lattice orthorhombicity described in Figs. 4(b) and
4(d), we consider the Ginzburg-Landau free-energy formalism
used in previous works [20,38]:

F [ϕ,δ] = F0 + a

2
(T − T0)ϕ2 + B̃

4
ϕ4 + C66,0

2
δ2 − λδϕ−P δ,

(1)
where the electronic nematic order parameter ϕ is coupled
linearly to the orthorhombic lattice distortion δ. It then follows
that (see the Appendix [50])

δ = (λ⟨ϕ⟩ + P )/C66,0, (2)

where C66,0 is the bare elastic constant that has no strong tem-
perature dependence and P is the conjugate uniaxial pressure
(stress) [38,41,50–52]. In the absence of the elasto-nematic
coupling (λ = 0), the nematic susceptibility χϕ = 1/[a(T −
T0)] is characterized by the Curie-Weiss temperature T0. Upon
considering the coupling between the nematic order parameter
ϕ and the structural lattice distortion δ (or equivalently, the
elastic shear strain ε6), the elastic susceptibility takes on the
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(FWHM) of !d/d in several iron pnictides under different uniaxial
pressures obtained from neutron Larmor diffraction experiments [50].
(a) Temperature dependence of !d/d in FWHM for the (4,0,0) Bragg
reflection of BaFe2As2 at P = 0 and 20 MPa. The solid line above TN

is a fit using Curie-Wiess formalism [FWHM(T ) = A/(T − T1) + B,
where A, B, and T1 are fitting parameters]. (b) Similar data for
SrFe1.97Ni0.03As2. The vertical blue and red dashed lines in (a)
and (b) mark the TN of the sample at zero and finite pressure,
respectively. (c) Similar data for BaFe1.97Ni0.03As2, where the vertical
green and blue dashed lines mark TN and Ts , respectively, at zero
pressure. The open green and yellow squares mark measurements
of FWHM under zero pressure (fresh) at the (4,0,0) and (0,4,0)
Bragg peaks, respectively. The pink solid circles are identical
measurements under P ≈ 10 MPa uniaxial pressure on (4,0,0). The
solid green diamonds are data after uniaxial pressure is released. The
vertical red dashed line indicates the peak position of the FWHM
under P = 10 MPa. (d) Temperature dependence of FWHM in
!d/d for BaFe2(As0.7P0.3)2 at P = 0 MPa (solid green circles),
BaFe1.88Ni0.12As2 at P = 0 (solid green diamonds), and 14 MPa
(solid red circles).

agnetic tetragonal state without static AF order. The weak
temperature dependence of FHWM in these materials suggests
that the large temperature dependence of FWHM in AF
ordered BaFe2−xNixAs2 (x = 0,0.03) and SrFe1.97Ni0.03As2 is
due to a strong magnetoelastic coupling. Although application
of a P ≈ 14 MPa uniaxial pressure on BaFe1.88Ni0.12As2
increases the absolute value of FWHM, it is still weakly
temperature dependent [Fig. 3(d)].

To further demonstrate the impact of uniaxial pressure
on the tetragonal-to-orthorhombic structural transition in
BaFe2−xNixAs2 (x = 0,0.03,0.12) and SrFe1.97Ni0.03As2, we
compare in Fig. 4 temperature dependence of the lattice
parameters along the orthorhombic a and b axis directions
under zero and finite uniaxial pressure. We first discuss results
for BaFe2−xNixAs2 with x = 0 [Figs. 4(a) and 4(b)] and
0.03 [Figs. 4(c) and 4(d)]. At P = 0, the lattice parameters
have a = b at temperatures above Ts (tetragonal phase) and
decrease linearly with decreasing temperature [open diamonds
and hexagons in Figs. 4(a) and 4(c)]. Upon application of a
uniaxial pressure, the system becomes orthorhombic at all tem-
peratures and the orthorhombic structural transition becomes
a crossover [filled diamonds and hexagons in Figs. 4(a) and
4(c)]. Figures 4(b) and 4(d) show temperature dependence of
the lattice orthorhombicity δ = (a − b)/(a + b) at different
uniaxial pressures for x = 0, and 0.03, respectively. For
unpressured fresh samples (P = 0), and after the pressure has
been released, the tetragonal structure becomes orthorhombic
below Ts and the AF order below TN further enhances
the lattice orthorhombicity [5]. Upon applying the uniaxial
pressure P ≈ 10, 15, and 20 MPa, the temperature dependence
of the lattice orthorhombicity becomes remarkably similar
to that of the B2g elastoresistance and nematic susceptibil-
ity of BaFe2−xTxAs2 obtained from transport [23,24] and
elastic shear modulus/ultrasound spectroscopy measurements
[38,51,52], respectively.

B. Theoretical Ginzburg-Landau analysis

To understand the temperature dependence of the pressure-
induced lattice orthorhombicity described in Figs. 4(b) and
4(d), we consider the Ginzburg-Landau free-energy formalism
used in previous works [20,38]:

F [ϕ,δ] = F0 + a

2
(T − T0)ϕ2 + B̃

4
ϕ4 + C66,0

2
δ2 − λδϕ−P δ,

(1)
where the electronic nematic order parameter ϕ is coupled
linearly to the orthorhombic lattice distortion δ. It then follows
that (see the Appendix [50])

δ = (λ⟨ϕ⟩ + P )/C66,0, (2)

where C66,0 is the bare elastic constant that has no strong tem-
perature dependence and P is the conjugate uniaxial pressure
(stress) [38,41,50–52]. In the absence of the elasto-nematic
coupling (λ = 0), the nematic susceptibility χϕ = 1/[a(T −
T0)] is characterized by the Curie-Weiss temperature T0. Upon
considering the coupling between the nematic order parameter
ϕ and the structural lattice distortion δ (or equivalently, the
elastic shear strain ε6), the elastic susceptibility takes on the
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FIG. 11. (a)–(d) Precession phase (φtot) dependent polarizations
across the structural transition for BaFe2As2. The solid green curves
are fits of the P (φtot) by one or multi-Gaussian d spacing distribution
models. (e)–(h) d spacing distributions in d space. The orthorhombic,
coexisting two different orthorhombic and tetragonal phases can be
determined for T = 136–139 K, respectively.

models [green curves in Figs. 11(a)–11(d)], indicating that the
lattice distortions are well determined.

The orthorhombic lattice distortions for BaFe2As2 and
SrFe1.97Ni0.03As2 obtained from Larmor diffraction measure-
ments of P (φtot) are shown in Fig. 12. These results are
consistent with previous results measured by x-ray diffraction
[5]. The error bars in Figs. 3 and 4 of the main text are fitting
errors of the raw data at different temperatures according to
formulas discussed above.

4. d spread anisotropy between a and b

Our another interesting discovery is the doping dependent d
spread anisotropy under uniaxial pressure. The samples shown
in Fig. 13 exhibit similar temperature dependence of the d
spread between (4,0,0) and (0,4,0), suggesting that the dif-
ference of d spread between a and b is trivial. However, we note
that the FWHM of (0,4,0), along the uniaxial pressure direc-
tion, is much larger than a in underdoped samples [Figs. 13(a)–
13(c)]. This may be attributed to an inhomogeneous distribu-
tion of the pressure induced strain field. However, we find very
small differences in d spread between (4,0,0) and (0,4,0) in
the overdoped BaFe1.88Ni0.12As2 [Fig. 13(d)], suggesting the
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FIG. 12. Temperature-dependent orthorhombic lattice distortions
for BaFe2As2 and SrFe1.97Ni0.03As2. The open green diamond in (a)
marks the temperature range showing four d spacings. The open red
diamonds in (b) show the persistence of the tetragonal phase into the
orthorhombic phase, indicative of a first-order structural transition,
consistent with previous reports. The vertical blue dashed lines mark
the structural transitions.

d spread anisotropy between a and b is nontrivial and may
be associated with antiferromagnetic/structural instability or
even nematic susceptibility in underdoped samples.

5. Lattice distortions and Young’s modulus

The Young’s modulus Y along the b axis (∼C66) can be
estimated by Y = P/δ, where δ is pressure induced lattice
distortion. At ∼250 K, the Y for BaFe2As2, BaFe1.97Ni0.03As2,
and BaFe1.88Ni0.12As2 estimated from our neutron Larmor
diffraction experiments are ∼50, ∼50, and ∼100 GPa, re-
spectively. Compared with the shear modulus C66 obtained
by ultrasound spectroscopy [52], the estimated Y for x = 0
and x = 0.03 are ∼30% larger. These differences are mainly
caused by the errors in our estimation of the applied pressure P
through measuring compressed spring distances and estimated
spring constant [41]. However, they will not affect temperature
dependence of the pressure-induced FHWM of #d/d and its
comparison with other iron pnictides, and thus will not alter
the conclusions of our experiments.

6. Landau theory and effect of magnetism
on nematicity and strain

In order to understand the distinct behavior of the ob-
served lattice distortion in SrFe1.97Ni0.03As2compared to
BaFe1.97Ni0.03As2 [see Fig. 1(c) in the main text], we write
down the Landau free energy incorporating the electronic
nematic order parameter ϕ, coupled magnetoelastically to the

134519-12
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FIG. 11. (a)–(d) Precession phase (φtot) dependent polarizations
across the structural transition for BaFe2As2. The solid green curves
are fits of the P (φtot) by one or multi-Gaussian d spacing distribution
models. (e)–(h) d spacing distributions in d space. The orthorhombic,
coexisting two different orthorhombic and tetragonal phases can be
determined for T = 136–139 K, respectively.

models [green curves in Figs. 11(a)–11(d)], indicating that the
lattice distortions are well determined.

The orthorhombic lattice distortions for BaFe2As2 and
SrFe1.97Ni0.03As2 obtained from Larmor diffraction measure-
ments of P (φtot) are shown in Fig. 12. These results are
consistent with previous results measured by x-ray diffraction
[5]. The error bars in Figs. 3 and 4 of the main text are fitting
errors of the raw data at different temperatures according to
formulas discussed above.

4. d spread anisotropy between a and b

Our another interesting discovery is the doping dependent d
spread anisotropy under uniaxial pressure. The samples shown
in Fig. 13 exhibit similar temperature dependence of the d
spread between (4,0,0) and (0,4,0), suggesting that the dif-
ference of d spread between a and b is trivial. However, we note
that the FWHM of (0,4,0), along the uniaxial pressure direc-
tion, is much larger than a in underdoped samples [Figs. 13(a)–
13(c)]. This may be attributed to an inhomogeneous distribu-
tion of the pressure induced strain field. However, we find very
small differences in d spread between (4,0,0) and (0,4,0) in
the overdoped BaFe1.88Ni0.12As2 [Fig. 13(d)], suggesting the
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FIG. 12. Temperature-dependent orthorhombic lattice distortions
for BaFe2As2 and SrFe1.97Ni0.03As2. The open green diamond in (a)
marks the temperature range showing four d spacings. The open red
diamonds in (b) show the persistence of the tetragonal phase into the
orthorhombic phase, indicative of a first-order structural transition,
consistent with previous reports. The vertical blue dashed lines mark
the structural transitions.

d spread anisotropy between a and b is nontrivial and may
be associated with antiferromagnetic/structural instability or
even nematic susceptibility in underdoped samples.

5. Lattice distortions and Young’s modulus

The Young’s modulus Y along the b axis (∼C66) can be
estimated by Y = P/δ, where δ is pressure induced lattice
distortion. At ∼250 K, the Y for BaFe2As2, BaFe1.97Ni0.03As2,
and BaFe1.88Ni0.12As2 estimated from our neutron Larmor
diffraction experiments are ∼50, ∼50, and ∼100 GPa, re-
spectively. Compared with the shear modulus C66 obtained
by ultrasound spectroscopy [52], the estimated Y for x = 0
and x = 0.03 are ∼30% larger. These differences are mainly
caused by the errors in our estimation of the applied pressure P
through measuring compressed spring distances and estimated
spring constant [41]. However, they will not affect temperature
dependence of the pressure-induced FHWM of #d/d and its
comparison with other iron pnictides, and thus will not alter
the conclusions of our experiments.

6. Landau theory and effect of magnetism
on nematicity and strain

In order to understand the distinct behavior of the ob-
served lattice distortion in SrFe1.97Ni0.03As2compared to
BaFe1.97Ni0.03As2 [see Fig. 1(c) in the main text], we write
down the Landau free energy incorporating the electronic
nematic order parameter ϕ, coupled magnetoelastically to the
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Concluding remarks 

•  range in Q,ω:   wide ≈ thermal neutron TAS  
•  line positions: straightforward & sensitive (≤ 5 µeV) 

•  line widths:  involved & time-consuming (≥ 5 µeV) 

•  need for enhanced luminosity 
  but limited due to dispersion 

•   excellent agreement with ab initio calculations 
•   ω(T)  importance of 4th (and higher) order terms 

•   Γ(T)  dominated by difference processes 

74Ge: X-point phonon 

IN20 TASSE: 


