

СПЕКТРИНА - 2016

Ш Совещание по неупругому рассеянию нейтронов

г. Гатчина **23 – 24 июня 2016 года**

https://oiks.pnpi.spb.ru/events/spektrina-2016

Нейтронная спектроскопия кристаллического поля в аморфной и кристаллической фазах: особенности локального строения П.А. Алексеев

НИЦ «Курчатовский институт» НИЯУ «МИФИ»

На основе совместных работ с :

В.Н. Лазуковым, Е.С. Клементьевым, В.Г. Орловым,

М.Н. Хлопкиным (Курчатовский Институт),

J.-B. Suck (ILL)

Топологический порядок в ближнем окружении

Какие методы позволяют охарактеризовать топологический порядок?

Топологический порядок в ближнем окружении

Какие методы позволяют охарактеризовать топологический порядок?

Топологический порядок в ближнем окружении

Какие методы позволяют охарактеризовать топологический порядок?

Проявления топологического «порядка» в аморфных системах

Nucl. Instr. & Meth. 199 (1982)

J.Appl.Phys.<u>53(</u>3) (1982)

Локально-чувствительные методы

NQR

Число и расстояние до соседних атомов усредненное по образцу.

EXAFS

Модельнозависим

Рассеяние рентгеновских лучей (СИ)

Эффект Мёссбауэра Магнитные свойства

Эффекты кристаллического электрического поля

Неупругое магнитное рассеяние нейтронов Характерные особенности нейтронной спектроскопии

Энергия и длина волны – масштаба характерных для возбуждений в конденсированных средах

Нейтрон взаимодействует как с ядрами, так и с магнитными моментами

Легко проникает в объем вещества, так как электрически нейтрален

Комплиментарность с другими ядерно-физическими методами

Нейтронные спектры кристаллическихРЗ-систем (СКЭС)

ILL: IN-4C, IN-6 – TOF instruments

Instrument layout

Instrument Data

Reactor hall, thermal beam H12	
monochromator	
PG 002: 2.00 3.8 Å	
PG 004: 1.00 1.9 Å	
Cu III: 1.25 2.4 Å	
Cu 220: 0.80 1.5 Å	
take-off angle $2\theta_M$	35 ° 70°
resolution $\Delta E_i / E_i$	2 5 %
lux on sample	5 x 10 ⁵ n cm ⁻² s ⁻¹
background choppers ν max.	5 000 rpm
Fermi chopper v max.	40 000 rpm
duty cycle	3 x 10-3
beam size	3 x 8 cm ²
primary collimation $\Delta \theta$	l°.

web: www.ill.eu/in4/

monochromator		
composite, vertically focusing pyrolitic graphite crystals		
incident wavelength in Å	4.1, 4.6, 5.1, 5.9	

sample	
elastic energy resolution	
at 4.1 Å	170 μeV
at 4.6 Å	120 μeV
at 5.1 Å	70 µeV
at 5.9 Å	50 µeV
max. energy loss of neutrons	3 meV
max. energy gain of neutrons	200 meV
max. momentum transfer	2.6 Å-'
vertical divergence	100 mrad
beam size at the sample	3 x 5 cm ²
flux at the sample at 4.1 Å	8.9 x 10 ⁴ n cm ⁻² s ⁻¹
Fermi chopper speed	3000 - 15000 rpm
Be-filter	total thickness 12 cm

В чем различие структур аморфного и кристаллического состояний для одной и той же системы?

Основные требования к системе, используемой для изучения влияния аморфизации на локальную топологию с помощью эффектов кристаллического электрического поля (КЭП)

1) «Сенсорный» РЗ-ион должен присутствовать в качестве структурного элемента кристаллической решетки;

2) Желательно иметь прямой переход (по температуре, например) из метастабильной аморфной в кристаллическую стабильную фазу;

3) Схема расщепления в КЭП кристаллического состояния должна быть надежно установленной и достаточно простой, то есть:

- РЗ-ион должен занимать только один тип структурных позиций;
- симметрия позиции должна быть достаточно высокой;

- полный момент f-оболочки должен быть небольшим и целым (т.е. желательно использовать не-крамерсовский ион из первой половины ряда).

Свойства соединений типа RENi₅

Структура

Один из вариантов поучения аморфного материала

Изложница, готовая мишень LaNi₅, мишень после 50 ч работы установки МИР

Структурная релаксация аморфного $(La, Pr)_{0.17}Ni_{0.83}$ / RENi₅

Прямой переход аморфное – кристаллическое состояние при нагреве

Свойства кристаллического $Pr_{0.17}Ni_{0.83}$ (PrNi₅)

Влияние аморфизации на теплоемкость Pr_{0.17}Ni_{0.83}

Магнитные свойства Pr_{0.17}Ni_{0.83}

Нейтронная спектроскопия f-электронных состояний в «КЭП» Pr_{0.17}Ni_{0.83}

Особенности нейтронных спектров Pr_{0.17}Ni_{0.83} в аморфном и кристаллическом состояниях

В аморфной фазе есть «эффекты КЭП»

10

8

[barn]

σ ^{tot} mag

2

0

теплоемкостью

электронов разумно соотносится с

Нейтронные спектры аморфного Pr_{0.17}Ni_{0.83} в E-Q координатах

Усиление магнитных корреляций в аморфном Pr_{0.17}Ni_{0.83}

Для поликристалла Θ>0, т.е. корреляции ферромагнитные, ~30…50% от необходимой для упорядочения величины

Попробуем представить, какие структурные изменения минимально-необходимы для наблюдаемой перестройки физических свойств PrNi₅?

Energy transfer, meV

Влияние различных видов разупорядочения на расщепление основного мультиплета Pr³⁺ в КЭП

Energy transfer, meV

S(Q,E)

Модель для учета локального разупорядочения в эффектах КЭП

$$\mathbf{H}_{CF} = \mathbf{H}_{CF}^{hex} = \mathbf{B}_{2}^{0}\mathbf{O}_{2}^{0} + \mathbf{B}_{4}^{0}\mathbf{O}_{4}^{0} + \mathbf{B}_{6}^{0}\mathbf{O}_{6}^{0} + \mathbf{B}_{6}^{6}\mathbf{O}_{6}^{6}$$

<body>

<body>

 Δ (RDF)~0.35A \Longrightarrow (<a>+<C>)

PrNi5 lattice

Lowering the symmetry: full orthorhombic H_{CF} is replaced in calculations by "reduced" one:

 $H_{CF} = H_{CF}^{hex} + B_2^2 O_2^2$

 $S(E) = << S(E) >_{a,c} > B_2^2$

 $S(E) = \langle S(E) \rangle_{a.c}$

Разумное соответствие с экспериментом $|\mathbf{B}_{2}^{2}| \sim 0.5 \text{meV}$ $\Delta \phi \sim 3...5^{0}$ Δ (RDF)~0.35Å

Модельные расчеты спектра магнитного рассеяния нейтронов

 $\Delta \phi \sim 3...5^{\circ}$

Аморфизация и расщепление в КЭП

Влияние аморфизации на теплоемкость Pr_{0.17}Ni_{0.83}

Магнитные свойства аморфного Pr_{0.17}Ni_{0.83} Структурная релаксация в аморфном и кристаллическом состояниях $Pr_{0.17}Ni_{0.83}$

Основные результаты

- между аморфной (А) и кристаллической (К) фазами Pr_{0.17}Ni_{0.83} имеются качественные различия физических свойств, определяемые изменением спектра состояний f-электронов (теплоёмкость, ФМ-корреляции...);

 тем не менее, аморфизация не приводит к полному «размытию» спектра состояний в локальном «кристаллическом поле» - сохраняется определенная структура;

- наблюдается ряд особенностей структурной релаксации как в А- так и в Кфазах Pr0.17Ni0.83 :

резкий (по температуре, ∆T~ 10 - 2 Tcryst) переход между этими состояниями,

«гомогенизация» структуры А-фазы вблизи Tcryst,

ближайшие расстояния между атомами в А-фазе немного меньше (на~0.5%), чем в равновесной К-фазе

- наблюдаемые эффекты удается понять на основе модели «деформированного кристалла», предполагающей разброс как длин межатомных «связей», так и их ориентаций;

Выделение магнитной составляющей из экспериментальных спектров НРН поликристаллического образца (спектрометр по времени пролета)

Нейтронные спектры кристаллическихРЗ-систем (СКЭС)

