Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

A. Mirmelstein
Department of Experimental Physics
Russian Federal Nuclear Center – E.I. Zababakhin Institute of Technical Physics (RFNC-VNIITF)
Snezhinsk, Chelyabinsk region, Russia

Outline

• Motivation
• Why CeNi?
• Structural behavior of CeNi under pressure
• Magnetic dynamics of CeNi before and after structural transition
• Conclusions
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

In collaboration with

Sample
B. Saparov
A.S. Sefat

Materials Science and Engineering Div., ORNL

Neutron scattering
A. Podlesnyak
G. Ehlers
D.L. Abernathy
Antonio M. dos Santos
A.I. Kolesnikov

Quantum Condensed Matter Science Div. ORNL
ORNL
Chemical and Engineering Materials Div., ORNL

X-ray diffraction
G.J. Halder

X-Ray Science Division, ANL

Special thanks are addressed to Andrey Podelsnyak, Sasha Kolesnikov (ORNL) and James G. Tobin (LLNL) for their long-term support and contribution to this study.
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Motivation

The main problem of interest:

mechanisms underlining the pressure-induced first-order structural phase transition with volume jump in f-electron systems

The problem is closely related to understanding crossover between the local moment and itinerant f electron behavior.

The most famous examples are:

• the isostructural volume-collapse $\gamma \rightarrow \alpha$ transition in Ce metal
• $\delta \rightarrow \alpha$ transformation in plutonium metal ($\delta \rightarrow \alpha'$ in fcc Pu-Ga alloy)
Isosctructural volume-collapse $\gamma \rightarrow \alpha$ transition in Ce metal

$\Delta V/V \sim 15-17\%$

Atomic volume $V = a^3/4$ of Ce vs. pressure at room temperature. a is the crystal lattice parameters.

Red signs – VNIITF data.

(a) dc bulk magnetic susceptibility $\chi(T)$ for Ce$_{0.721}$Th$_{0.269}$.

(b) The effective moment $\mu_{\text{eff}} = T\chi/C$ should saturate to unity at high T.

S.M. Shapiro et al., PRB 16 (1977) 2225.

Replacement of the normal Curie-Weiss T-dependence in $\chi(T)$ of γ phase (indicative of a local moment behavior) by a practically T-independent susceptibility in α-Ce (suggesting a quenched moment state).
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

$\delta \rightarrow \alpha'$ transformation in fcc Pu-Ga alloy

Volume difference between α- and δ- phases is $\sim 25\%$
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

\[\delta \rightarrow \alpha' \] transformation in fcc Pu-Ga alloy

- Pressure-induced \(\delta \rightarrow \alpha' \) transformation in fcc Pu-Ga alloys [S. Hecker, 2011].

- \(\delta \) phase directly transforms to \(\alpha' \)

- X-ray diffraction pattern of pressure-induced \(\delta \rightarrow \alpha' \) transition in Pu-3.3%at.Ga [A. Schwartz et al., Progress in Materials Science, 2009]

- Both \(\alpha' \)- and \(\gamma' \)- phases arise simultaneously under pressure

Many features of this transition still have no explanation, including stabilization of the fcc phase by alloying different elements, influence of defects and strains on the transformation etc.
Why CeNi?

• CeNi is an intermediate-valence system experiencing pressure-induced structural instability [D. Gignoux, F. Givord, and R. Lemaire, J. Less-Common Metals 94 (1983) 165].

Magnetic susceptibility vs. temperature for CeNi (●) in a field of 50 kOe applied along the a, b, and c axes of the orthorhombic structure and the susceptibility of polycrystalline LaNi (○).

Specific heat vs. T for CeNi and LaNi. Inset: ΔC= C_{CeNi} - C_{LaNi}.

Thermal variation of resistivity $\rho_{Ce} = \rho_{CeNi} - \rho_{LaNi}$ along the a and c axes.
Why CeNi?

CeNi has the CrB-type orthorhombic crystal structure (space group Cmcm) repeatedly appearing in rare-earth and actinide metals under pressure, e.g., \(\alpha'^{-}\text{Ce}, \text{Pa}, \text{Nd}, \text{Pr}, \text{Am IV}, \text{and } \alpha^{-}\text{U} \).

\[a = 3.77 \text{ Å}, \quad b = 10.46 \text{ Å}, \quad c = 4.37 \text{ Å}\]

Ce: 4c (0, 0.139, 1/4)

Ni: 4c (0, 0.428, 1/4)

Why CeNi?

• CeNi experiences pressure-induced first-order structural phase transition.

The structure of CeNi high pressure phase remained unknown for a long time (since 1985). Study of the structural transition in this compound can be useful to better understand the behavior of similar structures under pressure.
Why CeNi?

• As soon as the Ce valence in intermediate-valence CeNi differs significantly from integer value, one can expect the volume-collapse structural phase transition to shift the system towards the itinerant (bonding) f electron behavior (in this sense structural transition in CeNi can be considered as an analog of $\delta \rightarrow \alpha'$ transformation in plutonium).

The aim of this work is to determine the crystal structure of the CeNi high pressure phase using x-ray and neutron powder diffraction and to study the variation of magnetic excitation spectrum in CeNi due to structural transition by means of INS technique.
Experimental

Structural investigations:

powdered CeNi sample (natural mixture of Ni isotopes)

high-pressure synchrotron x-ray measurements, beamline 17-BM-B, APS (ANL)

T = 298 K, pressure up to 7.8 GPa

neutron powder diffraction, SNS (ORNL) SNAP diffractometer

T = 100 K, pressure up to 5.05 GPa

details: A. Mirmelstein et al., PRB 92, 054102 (2015)

Inelastic neutron scattering SNS, ORNL:

polycrystalline CeNi sample of ~3 g in mass, 60Ni isotope (enrichment ~99%)

60Ni nuclear cross section $\sigma_S = 1.0$ b

natural isotope mixture compared to $\sigma_S = 18.5$ b

magnetic cross section of Ce$^{3+}$ ions $\sigma_M \approx 3.7$ b

INS spectra of CeNi were measured using fine-resolution Fermi chopper spectrometer SEQUOIA, T = 20 K, ambient pressure, P = 0.4 GPa

Magnetic formfactor was measured with ARCS (wide angular-range chopper spectrometer) instrument

T = 20 K, ambient pressure, P = 0.45 GPa

Pressure was generated using the Al pressure cell with He gas as a pressure transmitting medium
Structure of CeNi high pressure-phase

![Diagram](image)

P-T phase diagram of CeNi as follows from the present diffraction (green and brown squares), magnetic (yellow triangles and red circles), and specific heat measurements. Blue solid line – empirical transition line suggested by Gignoux and Voiron (1985).

At room temperature:

First structural transformation occurs around $P \sim 1$ GPa.

CrB ($Cmcm$ space group) structure transforms to the FeB-type of structure ($Pnma$ space group). $\Delta V/V=1.3\%$ at $P = 1.17$ GPa

Second transformation occurs around 5 GPa

FeB $\rightarrow Pnma$-based mixed phase state FeB+$3a_{FeB}$

(explanation below)
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

CeNi Low Pressure (LP) phase

- **CrB-type Cmcm**
- $P=0.7$ GPa (below transition)
- $a = 3.771(2)$ Å, $b = 10.529(8)$ Å, $c = 4.366(2)$ Å
- Ce: 4c 0, 0.14(1), 1/4
- Ni: 4c 0, 0.42(1), 1/4

CeNi High Pressure (HP) phase

- **FeB-type Pnma**
- $P=4.2$ GPa
- $a = 7.161(5)$ Å, $b = 4.390(4)$ Å, $c = 5.086(4)$ Å
- Ce: 4c 0.13(1), 1/4, 0.20(1)
- Ni: 4c 0.09(1), 1/4, 0.66(1)

The FeB structure is typical for the RNi compounds where R is the rare-earth metal from the second half of the lanthanide series, while light lanthanides, including cerium, form the crystal lattice of the CrB type [A.E. Dwight, R.A. Conner, Jr., J.W. Downey, Acta Cryst. 18, 837 (1965)]

Both the FeB and CrB structural types contain a common structural unit, the trigonal prism, which is stacked differently to form either structure [R. Lemaire and D. Paccard, Journal of the Less-Common Metals 21, 403(1970)].
If the z value of the 4c sites in the Pnma structure goes to zero, one obtains the higher-symmetry Cmcm structure.
Structure of CeNi high pressure-phase

At $T = 100$ K:

Pure FeB Pnma structure was not found. At P above 1 GPa the neutron powder diffraction patterns are described by a new orthorhombic cell with crystal lattice parameters $a = 3 \times a_{FeB}$; $b = b_{FeB}$; $c = c_{FeB}$

$$3 \times a_{FeB}^{Pnma}$$

This structure is similar to the structure of quenched modification of the TbNi compound [R. Lemaire and D. Paccard, Journal of the Less-Common Metals 21, 403(1970)]

$\Delta V/V = 7.9\%$ at $P = 0.96$ GPa

P-T phase diagram of CeNi as follows from the present diffraction (green and brown squares), magnetic (yellow triangles and red circles), and specific heat measurements. Blue solid line – empirical transition line suggested by Gignoux and Voiron (1985).
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Structure of CeNi high pressure-phase

\[
\begin{align*}
 a_{TbNi} &= 3a_{FeB} \\
 b_{TbNi} &= c_{FeB} \\
 c_{TbNi} &= c_{FeB}
\end{align*}
\]

P-T phase diagram of CeNi

These previous experiments seem to confirm two transitions for both low and room temperature

Thermopower vs. pressure for CeNi at T=300 K

A. Mirmelstein et al. (2007)

Specific heat coefficient \(\gamma \) vs. pressure for CeNi

Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Equation of State for CeNi at $T = 300\, \text{K}$ and $T = 100\, \text{K}$.

Solid lines are the results of fitting the measured unit cell volume to a third-order Birch-Murnaghan EOS [F. Murnaghan, PNAS 30, 244 (1944), F. Birch, Phys. Rev. 71, 809 (1947)].
Фазовые переходы с коллапсом объема в f-электронных системах: CeNi

Парциальные плотности состояний для (а) CeNi Cmcm фазы при нормальном давлении, (b) Cmcm фазы при $P = 1$ ГПа и (c) Pnma фазы при $P = 1$ ГПа.

На вставках – те же DOS вблизи E_F в увеличенном масштабе.

Signature of increased f-d hybridization can be seen in panel (c).
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Structure of CeNi high pressure-phase: Pnma symmetry

DFT calculations (VASP)

The relative energies as function of pressure for LP *Cmcm* (circles) and HP *Pnma* (diamonds) structure as obtained from DFT calculations. Arrow indicates the structural transition at pressure $P = 0.94$ GPa.

DFT (LDA) calculations confirm the stability of the *Cmcm* CeNi crystal structure at ambient pressure down to the lowest temperature.

At the pressure value above 1 GPa the *Pnma* structure becomes preferable.

Interatomic distances (with respect to a central Ce ion):

- **Cmcm**:
 1st coordination sphere – 7 Ni neighbors
 $2 \times R_1 = 2.938 \, \text{Å}$, $4 \times R_2 = 2.948 \, \text{Å}$, $1 \times R_3 = 3.011 \, \text{Å}$.
 2nd coordination sphere – 8 Ce neighbors
 $2 \times R_4 = 3.601 \, \text{Å}$, $4 \times R_5 = 3.752 \, \text{Å}$, $2 \times R_6 (LP) = 3.771 \, \text{Å}$

- **Pnma**:
 1st coordination sphere – 6 Ni neighbors
 $1 \times R_1 = 2.357 \, \text{Å}$, $1 \times R_2 = 2.761 \, \text{Å}$, $2 \times R_3 = 2.794 \, \text{Å}$, $2 \times R_4 = 2.980$.
 2nd coordination sphere – 8 Ce neighbors
 $2 \times R_5 = 3.525 \, \text{Å}$, $2 \times R_6 = 3.611 \, \text{Å}$, $4 \times R_7 = 3.773 \, \text{Å}$.

- **R-Ni distances ↓ ⇒ 4f-Ni3d hybridization is expected to increase**
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Magnetic excitation spectrum of CeNi

The magnetic susceptibility vs. temperature (left) and inverse magnetic susceptibility vs. temperature (right) for two powder samples of CeNi.

Red curves correspond to the Curie-Weiss law with the effective magnetic moment of free Ce$^{3+}$ ion $p = g[(J(J+1))]^{1/2} = 2.53$ (J=5/2). ORNL sample was prepared for the INS experiments using 60Ni isotope. VNIITF sample was prepared for previously published magnetic measurements.

A. Mirmelstein et al., JNM 385, 57 (2009)

Anomalous upturn of $\chi(T)$ below 20 K has, most probably, an intrinsic origin connected presumably with coherent f-d hybridization [V.R. Fanelli et al., J. Phys.: Condens. Matter 26, 225602 (2014); J. Aarts et al., Solid State Commun. 56, 523 (1985)]
Magnetic excitation spectrum of CeNi

\[S_{\text{mag}}(Q, E, T) \sim |F(Q)|^2 \frac{E}{1 - \exp(-E/k_B T)} \frac{\Gamma/2}{(\Gamma/2)^2 + (E - E_0)^2} \]

\(\Gamma \) is the full width at half maximum (FWHM) of Lorentzian spectral component. \(E_0 \) determines the characteristic energy scale of the IV system (Kondo temperature \(T_K = E_0/k_B \))

\(E_1 = 15 \pm 0.2 \) meV, \(\Gamma/2 = 3.3 \pm 0.2 \) meV
\(E_2 = 30 \pm 0.3 \) meV, \(\Gamma/2 = 3.3 \pm 0.2 \) meV
\(E_3 = 40 \pm 2 \) meV, \(\Gamma/2 = 42 \pm 3 \) meV

Magnetic scattering function \(S_{\text{mag}}(E) \) for the polycrystalline CeNi60 sample at \(T = 20 \) K and ambient pressure (no pressure cell).
Magnetic excitation spectrum of CeNi

CeNi60 single crystal
E. Clementyev et al. PRB 61, 6189 (2000)

Magnetic scattering function $S_{\text{mag}}(E)$ for the polycrystalline CeNi60 sample at $T = 20$ K and ambient pressure (no pressure cell).

$E_1 = 15 \pm 0.2$ meV, $\Gamma/2 = 3.3 \pm 0.2$ meV
$E_2 = 30 \pm 0.3$ meV, $\Gamma/2 = 3.3 \pm 0.2$ meV
$E_3 = 40 \pm 2$ meV, $\Gamma/2 = 42 \pm 3$ meV

E\textsubscript{1} and E\textsubscript{2} coincide with the Al PDOS maxima

The origin of two narrow spectral lines remains unknown

$E_1 \sim 18$ meV, $\Gamma/2 = 4.5 \pm 0.5$ meV
$E_2 \sim 34$ meV, $\Gamma/2 = 4.5 \pm 0.5$ meV
$E_3 \sim 46$ meV, $\Gamma/2 \sim 24$ meV

Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi
Magnetic excitation spectrum of CeNi

![Graph showing magnetic excitation spectrum](image)

Magnetic scattering function $S_{mag}(E)$ for the polycrystalline CeNi sample at $T = 20 \text{ K}$ and ambient pressure (no pressure cell).

- "smooth" (brown) line:
 - $E_0 = 33 \pm 3 \text{ meV}$, $\Gamma/2 = 44 \pm 5 \text{ meV}$

Polycrystalline CeNi$_{60}$, $T=12 \text{ K}$, HET (ISIS, RAL)

$E_i=150 \text{ meV}$

Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Magnetic excitation spectrum of CeNi

![Graph showing magnetic excitation spectrum of CeNi](image)

- **$T = 20\ \text{K},$ ambient pressure**
 - $E_0 = 33\pm2\ \text{meV}, \Gamma/2 = 44\pm3\ \text{meV}$ (smooth line)

- **$T = 20\ \text{K}, P = 0.4\ \text{GPa}$**
 - $E_0 = 50\pm2\ \text{meV}, \Gamma/2 = 55\pm3\ \text{meV}$

Compression of CeNi leads to the increase of T_K due to enhanced Ce4f-Ni3d hybridization

Magnetic scattering function of CeNi60 at $T = 20\ \text{K}$ and ambient pressure (blue circles) and pressure of 0.4 GPa (red triangles), i.e. before and after the structural $Cmcm\rightarrow Pnma$ phase transition.

$\text{Спектр 2016 "ПЯФ" НИЦ "КИ" 23-24 июня 2016, Гатчина}$
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Comparison with bulk measurements \([\gamma, \text{Pauli-like low-temperature } \chi_0 \sim \langle n_f \rangle / E_0]\)

CeNi magnetic measurements
A. Mirmelstein et al., JNM 385, 57 (2009)
\(\chi_0(T=30 \text{ K}, P=0) / \chi_0(T=30 \text{ K}, P=0.47 \text{ GPa}) \approx 1.33\)

CeNi specific heat
\(\gamma(P=0) / \gamma(P=0.45 \text{ GPa}) \approx 1.36, \gamma(P=0) / \gamma(P=0.6 \text{ GPa}) \approx 1.63\)

INS experiments

\(E_0(P=0.4 \text{ GPa}) / E_0(P=0) = 50/33 = 1.52\)

\(\langle n_f \rangle \approx 1 - 0.05(\text{meV}^{-1}) \times E_0\)
E.S. Clementyev and A.Mirmelstein
JETP 109, 128 (2009)

\(\langle n_f \rangle \approx 0.84 \ (P = 0), \langle n_f \rangle \approx 0.75 \ (P = 0.4 \text{ GPa})\)

\([\langle n_f \rangle / E_0(P=0)] / [\langle n_f \rangle / E_0(P=0.4 \text{ GPa})] = 1.69\)

If \(E_0(P=0) = 40 \text{ meV (broad } E_3 \text{ line)}\)

\(\langle n_f \rangle \approx 0.8(P = 0), \langle n_f \rangle \approx 0.75 (P = 0.4 \text{ GPa})\)

\([\langle n_f \rangle / E_0(P=0)] / [\langle n_f \rangle / E_0(P=0.4 \text{ GPa})] = 1.33\)

Consistent results of bulk and INS measurements
Inelastic magnetic form factor of CeNi

Dynamic magnetic response of CeNi follows the free ion Ce\(^{3+}\) magnetic form factor before and after the structural transition in spite of essential variation of Kondo temperature and spectral response broadening.

Within the energy transfer range 55 < E < 85 meV nuclear contributions becomes negligible.

Measured signal = magnetic contribution + almost Q-independent weak background.

60 < E < 80 integration window to obtain F\(^2\)(Q)

Magnetic form factor F\(^2\)(Q) of CeNi before (blue triangles) and after (black circles) pressure-induced volume-collapse structural phase transition. The calculated form factor for the free Ce\(^{3+}\) and form factor measured experimentally for \(\alpha\)-phase of metallic cerium [A.P. Murani, S.J. Levett, and J.W. Taylor, Phys. Rev. Lett. 95, 256403 (2005)] are shown for comparison.
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Conclusions

• The pressure-induced crystal structure is shown to belong to the Pnma space group. An approximate phase diagram is suggested.

• The experimental results clearly demonstrate the increase of the characteristic energy scale of magnetic fluctuations (Kondo temperature) and the decrease of effective occupation of the 4f\(^{1}\) (J=5/2) ground state of the collapsed phase due to the enhanced Ce4f-Ni3d hybridization.

• The space distribution of magnetic density does not change under transition and remains the same as in the free Ce\(^{3+}\) ion.

4f electrons remains localized, while strongly hybridized with conducting bands, in the CeNi Pnma structure as well as in the case of \(\gamma\rightarrow\alpha\) transition in cerium.

Is \(E_{0}(T_{K})\) the only direct measure of localization/delocalization degree which can be determined experimentally?
DFT+DMFT calculations of $F(Q)$ and $\text{Im}\chi(Q,E)$ ⇒ KVC mechanism of $\gamma\rightarrow\alpha$ transition in Ce metal:
B. Chakrabarti, M.E. Pezzoli, G. Sordi, K. Haule, G. Kotliar, PRB 89 (2014) 125113
a charge self-consistent implementation, GGA functional in WIEN2K package, continuous-time quantum Monte Carlo impurity solver. $T = 116$ K, Hubbard potential $U=6$ eV, intra-atomic exchange (Hund’s coupling) $J=0.7$ eV.

![Graph 1](image1)

Imaginary part of the local dynamic susceptibility $\text{Im}\chi(\omega)$ for γ- and α-Ce (left). Inset: q-dependence of local static susceptibility $\chi(q, \omega = 0)$ of α-Ce.

Dispersionless character of $\chi(q, \omega = 0)$ proves the use of single-ion approach to calculate $F(Q)$ and is consistent with the fact that magnetic form factor does not change due to transition and keeps the form of a free Ce$^{3+}$ ion (right).

γ-phase: $T_K \sim 10$ meV, α-phase: $T_K \sim 180$ мэВ

Volume changes occurs due to increase in T_K and enhanced f-spd hybridization
Theory of $\gamma \rightarrow \alpha$ transition in Ce

Hybridization, T_K, and spin-orbit coupling in Ce

N. Lanata, Yong-Xin Yao, Cai-Zhuang Wang, Kai-Ming Ho, Jörg Schmalian, Kristjan Haule, and Gabriel Kotliar, PRL 111, 196801 (2013). LDA+GA, analog of LDA+DMFT (slave bosons to solve an impurity problem)

Total energy vs. volume (top) and P-V curves (bottom) for $U=5$ eV and $J=0.7$ eV at $T=0$. и эксперимент при $T=300$ К (внизу). Inset: the same curves for $4.5 \leq U \leq 6.5$ eV (step 0.5 eV) from the bottom to the top. Color signs – experimental data at 300 K. Horizontal lines (left bottom panel) and black signs in the inset indicate pressure corresponding to the minimum of bulk modulus $K=-VdP/dV$.

Pressure is calculated as $P = -dE/dV$. Structural transition corresponds to the minimum of K. At $U \leq 5.5$ eV K changes sign, indicating the first order transition. At $U = 5.5$ эВ $K=0$, i.e. the second order transition.

Such a behavior is observed only in the case if spin-orbit coupling is taken into account.
Local entanglement entropy S_f of the f electrons serves as a measure of coupling between f electrons and the rest of the environment:

$$S_f = -\text{Tr}[\rho_f \ln \rho_f]$$

ρ_f – reduced density matrix of the system in the f local subspace.

Crossover occurs only if SO coupling is taken into account.

In the α-phase S_f is not sensitive to the spin-orbit splitting. The local fluctuations induced in the f local space by the coupling with its environment are very large.

By increasing the volume, the fluctuations between $J=5/2$ f^1 subspace and the other local configurations are increasingly suppressed.

The crossover points identifies the situation in which the fluctuations are sufficiently small to be hampered by the spin-orbit.

The fluctuations are generated only by the entanglement, the main source of which is the f-spd hybridization.
1. Different behavior of Z with and without spin-orbit coupling.
2. Different behavior of Z for 5/2 and 7/2 states at the crossover point.
5/2 electrons undergo a clear crossover towards a localized phase "disentangled" by the conduction electrons. 7/2 electrons remain screened, but rapidly disappear and are absent in the γ phase.
3. Spin-orbit coupling speeds up the formation of the 4f1 local moment (4f1 grows faster with SOC than without).

Quasiparticle renormalization weights of the 7/2 and 5/2 f electrons, 7/2 and 5/2 orbital populations, and f configuration probabilities as a function of the system volume.
Dynamic Magnetic Response Across the Pressure-Induced Structural Phase Transition in CeNi

Thank you very much for your attention!
Magnetic excitation spectrum of CeNi

Magnetic scattering function of CeNi60 at ambient pressure (no cell) measured at $T = 20$ K with spectrometer SEQUOIA (blue circles) and at $T = 12$ K with ARCS instrument.
Ожидаемые для основного состояния величины энергетических компонент эффективного Гамильтониана, основное состояние которого обеспечивает решение рассматриваемой задачи. Нелокальная часть \hat{H} может быть представлена в виде

$$\hat{H} = \hat{T}_{ff} + \hat{T}_{fc} + \hat{T}_{cc}$$

где $c = spd$, а три члена суммы - нелокальные перескоки между $f-f$, $f-c$ и $c-c$ электронами.

Энергии перескоков $f-f$ и $f-c$ представляют собой масштаб энергий Хаббарда и Кондо. Масштаб Кондо почти на порядок превышает масштаб Хаббарда, который $\rightarrow 0$ вблизи перехода. Это соответствует KVK модели изоструктурного перехода. Можно заключить, что основной источник связи f локального пространства и его окружения – f-spd гибридизация. При учете СО взаимдействия энергетический масштаб Кондо уменьшается быстрее вблизи перехода, чем без учета СОВ.
Фазовые переходы с коллапсом объема в \(f \)-электронных системах: Ce, теория

Даже в \(\gamma \)-фазе, до коллапса, в основном состоянии есть примесь \(f^2 \) конфигурации, причем, судя по рисунку, ее даже больше, чем \(f^0 \).

Перераспределение между 5/2 и 7/2 состояниями – более резкий эффект вблизи перехода, чем изменение вероятностей конфигураций

При уменьшении вероятности конфигурации \(f^1 \) растет вероятность конфигурации \(f^2 \), так что \(N_f \sim 1 \), а при малом объеме \(N_f > 1 \).

Вероятность \(f^0 \) в области перехода растет незначительно.

Все вероятности, независимо от учета COB, изменяются практически монотонно в области перехода. тронов.

При \(U = U_c \sim 5.5 \) эВ – квантовая критическая точка II рода фазовой диаграммы Следовательно, металлический церий – критический элемент (J.C. Lashley et al, PRL 97 (2006) 235701)

Влияние температуры на физику \(\alpha-\gamma \) превращения: N. Lanata, Yong-Xin Yao et al., PRB 90, 161104(R) (2014)

Факторы перенормировки \(Z \) квазичастичного спектра для 7/2 и 5/2 \(f \) электронов (верхняя панель), орбитальные заселенности (в середине) и вероятности \(f \) конфигураций как функции атомного объема церия. Приведены значения этих параметров при \(U = 5 \) эВ (слева) и \(U = 6 \) эВ (справа) с учетом и без учета СО взаимодействия.

Спектина 2016 "ПИЯФ" НИЦ "КИ" 23-24 июня 2016, Гатчина
Структура фазы высокого давления CeNi
Оставалась неизвестной с 1985 г.

Основной структурный мотив: чередующиеся треугольники (тригональные призма), построенные из Ce либо Ni
Орторомбическая структура типа CrB
Пространственная группа Cmcm
$a = 3.77 \, \text{Å}, \quad b = 10.543 \, \text{Å}, \quad c = 4.37 \, \text{Å}$
Ce: 4c (0, 0.14, 1/4)
Ni: 4c (0, 0.42, 1/4)
$T = 300 \, \text{K}$

Если в Pnma (0.403, 0.25, 0.101) $z = 0 \Rightarrow Cmcm$

СrB структура типична для RNi, где R – из первой половины РЗ серии, а FeB – для R из второй половины РЗ серии
What is intermediate valence (IV)?

Energy of 4f level of isolated impurity at $T = 0$

E_0 – energy of unperturbed $4f^n$ level

Coulomb repulsion ~ 5 eV

s- and p- conducting electrons + localized f electrons

Charge and spin transfer (fluctuations) between f- and (s,p) electrons

+ hybridization

$\Gamma = \pi^2 V^2 N(E_F)$

$\Gamma < E_0$ – heavy fermions

$\Gamma \geq E_0$ – intermediate (non-integer) valence (3.2+)

$\Gamma \ll E_0$ – stable 4f shell