

SANS instruments of JCNS@FRM II

Artem Feoktystov, Vitaliy Pipich, Aurel Radulescu

Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)

JCNS, May 2006 - ...

FRJ-2 "DIDO"

23MW

14 November 1962 – 2 May 2006

FRM II

Neutron Guide Hall East

FRM II

Neutron Guide Hall East

20MW

2 March 2004 – ...

KWS-1

- ① Neutron guide NL3
- ② High-speed chopper Δλ/λ=1%
- ③ Changeable polarisers
- Spin flipper
- ⑤ Neutron guide sections 18 x 1m

- ⑥ MgF₂ focussing lenses
- Sample position with magnet
- ® ³He spin filter with reversable polarisation (to be implemented)
- Anger-type scintillation detector
- High-Flux SANS diffractometer: 1×10^8 n cm⁻² s⁻² (for $\lambda = 5$ Å, $\Delta \lambda / \lambda = 10\%$); q-range: 1×10^{-3} 0.5 Å⁻¹; tunable λ -resolution 1 10% (with chopper)
- High-precision non-magnetic hexapod for heavy loading
- Broadband neutron polarizer, large-cross-section radio-frequency spin flipper, chopper and neutron lenses
- Wide-angle polarization analysis (in development)

KWS-1 scientific applications

- Key features: polarized neutrons, polarization analysis, GISANS, real-time, high-resolution, magnetic SANS
- Magnetic ordering in complex and magnetic soft matter systems,
- Spin alignment in mesocrystals and nanorods,
- Vortex lattices, skyrmions,
- Ferrofluids,
- Janus nanoparticles and ordering in polymers and liquid crystals induced by added magnetic nanoparticles,
- GISANS under magnetic field for thin films and liquids,
- Studies of in-situ charging/discharging processes in the batteries (SANS and GISANS),
- High resolution measurements with chopper; Real-time/stroboscopic measurements,
- Soft matter/biological samples

KWS-1 detector

1-mm-thick Li-glass scintillator (efficiency of 96% for 8 Å).

 4×4 plates of dimensions 15×15 cm, which are glued with optical contact on a support glass frame, forming an active area of 60×60 cm².

Behind the scintillator, there is a disperser glass in optical contact to an 8×8 array of photomultiplier tubes (PMTs)

KWS-1 polarizer & flipper

(left) Large cross-section radio-frequency spin flipper; (right) Polarizer chamber, chopper chamber and spin flipper; (bottom) Polarizer revolver with neutron guide and polarizer in beam;

KWS-1 polarizer & flipper

- 3-channel V-cavity (50×50 mm²)
- length: 65 cm
- coating: Fe/Si, m = 3.6;
 non-magnetic Ni(Mo)/Ti, m = 1.2
- Si substrate (300 μm)
- ~600 G holding field
- λ from 4.5 Å to 20 Å
- average polarization about 93%

Polarizer and flipper efficiency as measured on KWS-1 with absolute ³He analyzer

Measured polarized flux for 4 m collimation (30×30 mm²) @ 5 Å (gold foil activation): 3.75×10⁶ n cm⁻² s⁻¹ (39% of non-polarized flux)

KWS-1 polarization analysis

Compact polarization analyzer by means of ³He cell with GE180 glass:

analyzed *q*-range:
 1 × 10⁻² Å⁻¹ – 0.3 Å⁻¹

In-situ spin-exchange optical pumping (SEOP):

- constant analyzing efficiency
- minimal day-to-day maintenance

³He cell lifetime 24 hours

Better field homogeneity, expected much longer ³He cell lifetime

Babcock E., Salhi, Z., Theisselmann T., et al., J. Phys. Conf. Ser. (2016). 711, 012008

KWS-1 "magnetic" sample environment

Hexapod (loading up to 550 kg)

Electromagnet 2.2 T; has an option with cryofinger 10-320 K)

Cryomagnet 5 T (1.8-300 K)

KWS-1 control software

KWS-1 status display

KWS-2

KWS-2 – High-Flux & Tunable Resolution & Broad Q-range SANS Instrument for Soft Matter and Biophysics

- Neutron guide
- ② Velocity selector Δλ/λ=20%
- ③ High-speed chopper Δλ/λ=1%
- Entrance aperture
- ⑤ Neutron guide sections 18 x 1m
- ⑥ Transmission polariser
- ⑦ MgF, focussing lenses
- ® Sample aperture
- High resolution position-sensitive detector
- [®] ³He tubes array detector

A. Radulescu et al., Nuclear Intruments & Methods A (2008), J. Phys. Conf. Ser. (2012), Nuclear Intruments & Methods A (2012), J. Appl. Cryst. (2015), JoVE (2016)

KWS-2 characteristics

- SANS diffractometer dedicated to the investigation of soft matter and biophysical systems covering a wide length scale from nm up to µm
- optimized for:
 - exploration of the wide momentum transfer q-range between 1x10⁻⁴ and 1 Å⁻¹ by combining classical pinhole (λ = 3.. 20 Å) and focusing (with lenses) methods
 - high neutron flux (max. flux: 2x10⁸ n/cm²/s) & increased intensity using lenses and large samples (up to 5 cm diameter) while keeping the resolution
 - detection of high counting rates (multi-MHz)
 - adjustable resolution (Δλ/λ between 2% and 20%)
- "in-operando" adjustment of the intensity and the resolution within wide limits
- equipped with specific sample environments and ancillary devices:
 - Stopped-flow
 - Rheometer
 - Magnet
 - Humidity Cell

- Cryostat with sapphire windows
- in-situ FT-IR spectroscopy
- in-situ DLS and SLS
- Pressure Cell

KWS-1/2 chopper

KWS-2 q-range

for sizes & correlations from nm up to µm

<u>Applications</u>: drug carriers (liposomes), nanocrystals, hydrogels (thermo- and pH-sensitive), cryogels, hierarchical polymer morphologies, multilevel structures & correlations in PEM

KWS-1/2 high-flux mode

Applications: SANS under contrast variation and weak contrast conditions, weak scattering biological samples

the neutron flux

KWS-1/2 high resolution mode

ordering & correlations

<u>Applications</u>: ordered systems (micellar lattices), TR-rheo-SANS on gels and semicrystalline polymers, weakly polydisperse systems, avoiding gravity effects (lenses), probing inelastic scattering

KWS-2 time-resolved SANS

Equilibrium Chain Exchange Kinetics of Spherical Diblock Copolymer Micelles

R. Lund et al., Macromolecules, 2011, 44 (15), pp 6145-6154

KWS-2 new detector

Dedicated mostly to detection of weak signals from small biological samples at high *q*

- stability
- wide *q* (large active area)
- high counting rate

Supplied by GE Reuter-Stokes, in operation since 2015

KWS-1/2 standard sample environment

KWS-3

Highest resolution SANS instrument

- ① Neutron guide NL3a
- ② Velocity selector
- ③ Entrance aperture
- 4 Toroidal mirror

- ⑤ Mirror chamber
- Sample positions
- ⑦ Detector

KWS-3 mirror focusing SANS diffractometer

KWS-3 *q*-range Jülich@FRJ-2 [<2005]

KWS-3 was built **to bridge the gap** between Bonse-Hart (**DCD**) and pinhole cameras (**SANS**)

- high brilliance neutron source
- double toroidal mirror: 2D Focusing
- non-magnetic coating ⁶⁵Cu: No domains
- roughness on Angstrom level
- geometrical focusing: wave length independent
- almost 100% reflectivity above 12Å
- signal-to-noise ratio better 10⁵

KWS-3 time-line

- 2000-2003 :: in construction ::
 - to bridge the gap between Bonse-Hart (DCD) and pinhole cameras (SANS);
- <u>2003-2005</u>:: test-and-user operation in Jülich::
 - 10⁻⁴ ... 2.5×10⁻³ Å⁻¹ [High-Resolution-Mode] --- 600 n/sec [SDD=9.5m, 12.8A, 2x2mm²];
 - 2.5×10⁻⁴ ... 2.5×10⁻³ Å⁻¹ [High-Intensity-Mode] --- 3000 n/sec [SDD=9.5m, 12.8A, 5x5mm²];
- <u>2005 (may)</u> :: reactor shutdown in Jülich;
- 2005-2006 :: movement to FRM II reactor in Garching
- <u>2006-2008</u> :: test operation with some "critical" problems
 - mirror oxidation; guide damage; no budget;
- <u>2008-2009</u> :: mirror reparation;
- **2010** :: started user-operation at FRM II;
- 2011 :: second sample chamber @ SDD=1.2m → SANS overlap → 10⁻³ ... 2×10⁻² Å⁻¹
- <u>2014</u> :: new neutron-guide-splitter was installed
 - [High-Resolution-Mode] --- 24000 n/sec;
 - [High-Intensity-Mode] --- 120000n/sec;
- 2015 :: second detector with more than x2 better resolution was commissioned ::
 - new DCD overlap mode :: 4×10⁻⁵ ... 10⁻³ Å⁻¹ --- 3600n/sec [SDD=9.5m, 12.8A, 0.7x0.7mm²];
- **2016** :: mirror chamber upgrade & new positioning system;
- <u>2016</u>:: upgrade of sample area:: "any" sample environment could be installed;
- 2017 :: polarized neutrons & analysis

KWS-3 q-range Garching@FRM II [>2016]

Q-range extended to almost THREE decades: 3x10⁻⁵... 2x10⁻²Å⁻¹

--- SANS overlap: 2nd sample position (1.2m)

--- USANS overlap: 2nd detector and 0.7x0.7 mm² entrance aperture

KWS-3 current *q*-range

#0 New (2015) VHR detector [$3x3 \text{ cm}^2$, $\approx 0.3 \text{mm resolution}$]

#1-#4 Standard HR detector [⊗9cm, ≈0.9mm resolution]

SDD: 9.5m (#0-#2), 1.3m (#3), 0.05..0.15m (#4)

standard mode :: high resolution

 $Q_{min} = 1.0 \times 10^{-4}$ >23k

standard mode :: high intensity

 $Q_{min} = 2.5 \times 10^{-4}$ >130k

overlap mode :: SANS-overlap

 $Q_{max} = 2.0 \times 10^{-2}$ >130k

overlap mode :: DCD-overlap

 $Q_{min} = 3.0 \times 10^{-5}$ >1.5k

instrument calibration mode

 $Q_{max}=0.4$ >130k

KWS-1 if you have magnetic systems

KWS-2 for soft matter objects

KWS-3 for large scattering objects

Scientifically driven instrument development

Apply for a beam-time at fzj.frm2.tum.de

More information at mlz-garching.de/user-office

WE WILL MAKE YOUR EXPERIMENT COME TRUE!

Thank you for your attention!