

Neutron study of multilevel structures of diamond gels

V.T.Lebedev ${ }^{1}$, Yu.V.Kulvelis ${ }^{1}$, A.I.Kuklin ${ }^{2}$, A.Ya.Vul ${ }^{3}$

${ }^{1}$ Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Leningrad distr., Russia
${ }^{2}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{3}$ A.F.loffe Physical-Technical Institute of RAS, Saint-Petersburg, Russia

Nanodiamonds

Functionalisation, Suspensions, First Prepared DND-Gels

Prof. A.Ya. Vul
Laboratory of cluster structures
loffe Phys.-Tech. Institute of RAS, St.Petersburg

b

DND-Suspensions
Formation of double electric layer around particles by dissociation of carboxyl groups (a), coagulation of DND via a formation of bridges in the presence of Fe ions (b)

High Lights

SANS - studies of first prepared hydrogels of diamonds with charged surface
Short-range order in the ensembles of carbon particles (size D ~ 6 nm) associated into fractal clusters interpenetrating and forming a network at scales ~ $\mathbf{1 0 0} \mathbf{n m}$

Structures are stable in the concentration range, C ~ 1-5 wt. \%, at ambient temperature

Cross sections $\sigma(q)$ for gels demonstrate a kink at $q \sim q^{*}=2 \pi / D \approx 1 \mathrm{~nm}^{-1}$ which corresponds to characteristic size of diamond particle

At $q>q^{\star}$ dominates the scattering from single particles, $\sigma(q) \sim 1 / q^{4}$ where the exponent indicates slightly diffusive borders of particles

At $\boldsymbol{q}<\boldsymbol{q}^{*}$ the cross sections $\sigma(\boldsymbol{q}) \sim \mathbf{1} / \boldsymbol{q}^{d f}$ indicate the interference in scattering from the particles integrated into large clusters, fractal dimension $d_{f} \sim 2$

Solutions' structuring

Hydrogels of detonation nanodiamonds
 loffe Physycal \& Thechnical Institute, St.Petersburg

Particles: diamond, diameter ~ 5 nm, with attached carboxyl groups or other oxygen containing groups

Gel: Stable hydrosol of diamonds with positive (negative) potential $\zeta \cong 0.04-0.05 \mathrm{~V}$) to prevent aggregation \longrightarrow Water Evaporation Sonication, Separation in Centrifuge

Particles' surface stabilization - annealing on the air (in hydrogen flow)

[^0]

Diamgel with DND-particles' content 8 wt. $\%$ at $23^{\circ} \mathrm{C}$.
Maximum height of columns ~ 2 cm

Suspensions studied
[1] M.V.Avdeev, N.N.Rozhkova, V.L.Aksenov, V.M.Garamus, R.Willumeit, E.Osawa, J.Phys. Chem. C, (2009) 113, 9473.
[2] O.V.Tomchuk, L.A.Bulavin, V.L.Aksenov, V.M.Garamus, O.I.Ivankov, A.Ya.Vul', A.T.Dideikin, M.V.Avdeev, J. Appl. Cryst. (2014) 47, 642.
[3] O.V.Tomchuk, D.S.Volkov, L.A.Bulavin, A.V.Rogachev, M.A.Proskurnin, M.V.Korobov, M.V.Avdeev, J. Phys. Chem. C (2015) 119, 794.

Particles' fractions over size in Hydrosol (1) and Diamgel (2) prepared from this Hydrosol
Dynamic light scattering at ambient temperature
Diamgel: single particles + formations of gel
Particles' concentrations: 0.73 wt. \% in Hydrosol; 5.29 sec. \% in Diamgel

High viscosity at low content of particles
C ~ $C^{*} \sim 3-5 w t . \%$
Critical concentration C^{*} depends on the sign of ζ-potential

Lower C^{*} for $\zeta>0$
Hydrosol
pH $=7.5, \mathrm{C}=0,7 \mathrm{wt} . \%, \zeta>0$
C* $=4,2$ wt. $\%$

Negative potential, $\zeta<0$
Threshold C* ~ 7 wt. \%

Gel formation, C > C*

Viscosity growth by the increase of concentration $\left(20^{\circ} \mathrm{C}\right)$
At critical concentration $\mathrm{C}^{\star} \sim 4 \mathrm{wt}$.\% a giant growth of viscosity is observed

Thixotropic effect
Fast decay of gel by mechanical loading (shift)
Following very slow formation of gel structure

Schematic view of non symmetric potential of particles and formation of their chains

Gel dried: Chains of diamond nanoparticles (TEM, left)
Needle-like structures (right)
Particles covered by water shells (thickness ~ 5 nm)

Shells' contacts \rightarrow creation of chains \rightarrow gel formation

Elastic and inelastic neutron scattering
Elastic momentum transfer $q=(4 \pi / \lambda) \sin (\vartheta / 2)$, Spatial scale $R \sim 1 / q$
Relaxation at molecular scales by Neutron Spin Echo

- FAST RHEOLOGY at nanoseconds and picoseconds

ОИЯИ - Реактор ИБР-2

JINR, YuMO-facility - SANS from gels

Hydrogel of diamonds with charged surface
Dilution $C<C^{*} \sim 4.2$ \% wt.
$\sigma(q), \mathrm{cm}^{-1}$

Concentrations:
5.05; 2.25;1.13 \% wt.

Dilution below critical
$q<1 \mathrm{~nm}^{-1}$, particles correlations $q>n m^{-1}$, atomic correlations in particles

Kink at $\boldsymbol{q} \sim \boldsymbol{q}^{*} \sim \mathbf{1} \boldsymbol{n m}^{\boldsymbol{- 1}}$
Reciprocal size of particle, $q^{*} \sim$ $2 \pi / d_{S}$

Porod's law $\sigma(q) \sim 1 / q^{4}$
Sharp borders of particles
$\sigma(q) \sim 1 / q^{2}-$ Chain structures Polymers

Scales $\leq 100 \mathrm{~nm}$
Short-range order Stable at C ~ 1-5 \% wt.

States of binary system Diamonds + water
Suspension C < C*

Gel C>C*

Microgel $\mathrm{C}^{*} / 4 \leq \mathrm{C} \leq \mathrm{C}^{*}$

C < C*
Original gel
Disintegration into large domains in water
$\sigma(q) \sim 1 / q^{D 1,2}$
$D_{1} \sim 4 ; D_{2} \sim 2$
$q \geq q^{*} ; q \leq q^{*} \sim 1 n^{-1}$
Compensation of q-dependencies
Peculiarities of structure factor
Spacing of particles $d_{\text {int }}$ in gels' networks
Debye scattering function, $q \geq q^{*}$
$\operatorname{Sin}\left(q d_{\text {int }}\right) /\left(q d_{\text {int }}\right)$
Maximum $X=q_{\text {int }} d_{\text {int }} \approx 7.72$
$q_{\mathrm{int}} \approx 1.1 \mathrm{~nm}^{-1}=X / d_{\mathrm{int}}$
$d_{i n t} \approx 7 \mathrm{~nm}$ exceeds a characteristic diameter of particle, $d_{\text {int }}-d_{s} \approx 1 \mathrm{~nm}$

Network, $q \leq q^{*}$
$D_{w}=X / q_{w} \approx 40 \mathrm{~nm}$
$q_{w} \approx 0.18 \mathrm{~nm}^{-1}$

Size $\geq 2 \pi / q_{\text {min }} \sim 10^{2} \mathrm{~nm}$

Parameters

$$
\sigma(q) \sim 1 / q^{D 1,2}
$$

(b)

- 1
$C \rightarrow 0, D_{01}=2.35 \pm 0.01>2$
Dilution $\boldsymbol{\varphi}_{1}=1.44 \%$ $\varphi_{3}=0.22 \%$ vol.

Model of uniform spheres - particles' size distribution

Volume fractions $D(R)$ of particles vs. their radius R :
Concentrations 5.05; 2.25;1.13 \% wt. (a,b,c)

Maximum positions $\boldsymbol{R}_{1 m} \sim 2.4-2.6 \mathrm{~nm}$ Dispersions
$\delta= \pm(1 / 2)\left(\Delta R / R_{m}\right) \sim 0.5-0.8 \Delta R-F W H M$
Spectra are in agreement with DLS data

Single particle, radius $R_{1 m} \sim 2.6 \mathrm{~nm}$
Diameter $\mathbf{R}_{2 \mathrm{~m}} \sim 5.1 \mathrm{~nm} \sim 2 \mathbf{R}_{1 \mathrm{~m}}$
Double - triple diameter of particle, R ~ 10-15 nm

Short-range order !

Correlations inside particles and between them

$\gamma(R)=(1 / 2 \pi)^{3} \int \sigma(q)[\sin (q R) /(q R)] 4 \pi q^{2} d q, \gamma(R)=<\Delta \rho(r) \Delta \rho(r+R)>$
$\Delta \rho(r)=\rho(r)-\langle\rho>, \Delta \rho(r+R)=\rho(r+R)-<\rho>$ deviations of scattering length densities $\rho(\mathbf{r}), \boldsymbol{\rho}(\mathbf{r}+\mathbf{R})$ in two points, $\langle\boldsymbol{\rho}\rangle=\boldsymbol{\Sigma}\left(\mathbf{b}_{\mathrm{i}} \mathbf{N}_{\mathrm{i}}\right)$ - sum over nuclei lengths

Three levels of correlations

1. Short Radii, $0 \leq R \leq 6 \mathrm{~nm}$ (inside particles) $\mathrm{Y}_{1}(R)=A_{1} \exp \left(-R / r_{C}\right)$

Correlation radius r_{C} and geometrical radius of sphere $r_{S}=(3 / 4) r_{C} \approx 2.6 \mathrm{~nm}$
Maximum in spectrum $\mathbf{D (R)}$
2. Intermediate $R \geq 10 \mathrm{~nm}$ exceeds particle's diameter

First coordination sphere around a particle, $\mathbf{Y}_{\mathbf{2}}(\mathbf{R})=\mathbf{A}_{\mathbf{2}} \exp \left(-R / \mathbf{R}_{\mathrm{C}}\right), \mathbf{R}_{\mathrm{C}}=7.19 \pm 0.03 \mathrm{~nm}$
Volume $V_{C}=4 \pi \int \exp \left(-R / R_{C}\right) R^{2} d R=8 \pi R_{C}{ }^{3} \approx 9.3 \cdot 10^{3} \mathrm{~nm}^{3} \sim 10 V_{1}$
Single particle $V_{1}=8 \pi r_{c}{ }^{3} \approx 990 \mathrm{~nm}^{3}$
Particles inside the coordination sphere $\left(\mathbf{A}_{2} \mathbf{V}_{\mathrm{c}}\right) /\left(\mathrm{A}_{1} \mathrm{~V}_{1}\right)=\mathrm{m}=3.6 \pm 0.1$
Fragment of a branched chain forming a network
3. Large scale, $R \geq 20 \mathrm{~nm}$, gaussian function $\gamma_{3}(R)=A_{3} \exp \left[-\left(R / R_{L}\right)^{2}\right], R_{L}=19.9 \pm 0.1 \mathrm{~nm}$ Network cell's size $\boldsymbol{\sim} \mathbf{2 R}_{\mathrm{L}} \sim 40 \mathrm{~nm}$

Model of gaussian chains

End-to-end distance $\boldsymbol{R}_{\mathrm{L}}{ }^{2}=\boldsymbol{n d} \boldsymbol{s}^{2}$

Number of units (coupled particles)
$n=\left(R_{L}{ }^{2} / d_{S}{ }^{2}\right)=15.0 \pm 0.2$
Volume fraction of particles $\boldsymbol{\varphi}=1.44$ \% Chains' concentration
$N_{L}=\varphi /\left(n \pi d_{S}{ }^{3} / 6\right) \approx 1.3 \cdot 10^{16} \mathrm{~cm}^{-3}$
Spacing $R_{\text {int }} \approx N_{L}{ }^{-1 / 3} \approx 40 \mathrm{~nm} \sim 2 R_{L}$
Cell diameter $D_{w} \sim 2 R_{L} \sim 40 \mathrm{~nm}$ Number of particles in a cell $m_{L} \sim 70$

Chain's contour length $L_{c}=n d_{s} \approx 80 n m \sim 2 D_{w}$
Overlapping - Gel Formation Junctions' functionality
$f_{C}=m_{L} / n \approx 4$

Hierarchy of structural levels in Gel

Scales: $L=r_{c} ; R_{C} ; R_{L} ; D_{w} \sim 3-40 n m$,
Growth by 1 order in magnitude
Corresponding Mass Enhancement: $M=1 ; 4 ; 15 ; 70$
Mass Factal: $M \sim L^{D f}, D_{f}=1.41 \pm 0.03$ Chains with Excluded Volume

Diamonds - Contrast factor relatively to the surrounding medium
Pristine Gel: $\boldsymbol{\varphi}=\mathbf{1 . 4 4} \%, A_{1}=\left(\Delta \rho_{\mathrm{D}}\right)^{2} \varphi \longrightarrow \Delta \rho_{D}=(10.36 \pm 0.01) 10^{10} \mathrm{~cm}^{-2}$
$\Delta \rho_{D}=\rho_{D}-\langle\rho\rangle=(1-\varphi)\left(\rho_{D}-\rho_{w}\right)$
Difference between the scattering lengths density of the carbon material and the average parameter for sample's volume
$<\rho>=\varphi \rho_{\mathrm{D}}+(1-\varphi) \rho_{\mathrm{w}}$
$\rho_{W}=-0.56 \cdot 10^{10} \mathrm{~cm}^{-1}-$ - scattering length density for light water
Length density of particles $\rho_{D}=\Delta \rho_{D} /(1-\varphi)+\rho_{W}=(9.95 \pm 0.01) 10^{10} \mathrm{~cm}^{-2}$
is by 15% lower than a similar parameter $\rho_{D I}=11.7 \cdot 10^{10} \mathbf{~ c m}^{-2}$
for crystalline diamond (density of $3.5 \mathrm{~g} / \mathrm{cm}^{3}$)

Summary

SANS study of new gels of nanodiamonds has shown several levels of these systems structural organization
\square the correlations inside single particles,
\square neighboring particles in the first coordination sphere,
chain-like formations and at last
\square the cells of gel as composed of these chains joint
It was established a substantial stability of these forms of particles assembly even by a dilution of system from original gel with ~ 5% wt. of carbon fraction to rare system containing ~ 1 \% of diamonds only

This stability confirms a domain structure of gel observed by Dynamic Light Scattering

Thank You for attention!

The work was supported by RFBR (grant 14-23-01015 ofi-m)

[^0]: 1. A.E.Aleksenskiy, E.Eydelman, A.Ya.Vul'. Deagglomeration of Detonation Nanodimonds. Nanotechnology Letters, 3, N1, 6874 (2011)
 2. A.Ya.Vul', A. T. Dideikin, A.E. Aleksenskiy, M. V. Baidakova. Detonation Nanodiamonds. Synthesis, Properties and Applications. In: "Nanodiamond", Ed O. A. Williams, Cardiff University, UK Royal Society of Chemistry "Nanoscience and Nanotechnology" (2014)
 3. A.Ya. Vul' and E. D. Eydelman, M Inakuma, E.Ōsawa. Correlation between Viscosity and Absorption of Electromagnetic Waves in an Aqueous UNCD Suspension. Diamond and Related Materials, v.16, 2035-2038 (2007).
