Исследование комплексов из больших и малых белков теплового шока в растворе методом малоуглового рентгеновского рассеяния

Амарантов С.В. ФНИЦ «Кристаллография и Фотоника» ИК РАН

Белки семейства Hsp60 (БТШ60)

Решаемые в работе задачи:

- Формфактор тора и его применение в решении обратной задачи
 восстановление формы частицы по кривой малоуглового рассеяния.
- 2. Исследование методом малоуглового рентгеновского рассеяния конформации белков шаперонинов, имеющих центрально-симметричное отверстие, в растворе, и моделирование их формы и конформационных переходов с применением полученных формфакторов.

Известная структура молекул некоторых шаперонинов

Шаперонины делятся на две группы: к группе I относятся GroEL (*Escherichia coli*) и т.н. бактериальные шаперонины найденные в бактериях, митохондриях и хлоропластах, к группе II вирусные шаперонины архей и эукариот.

Обе группы шаперонинов функционируют за счёт энергии гидролиза АТФ.

GroEL состоит из 14 идентичных субъединиц (57 кДа), формирующих два уложенных стопкой кольца

КомплексGroEL-GroEs

GroEL/GroES защищает пептиды от агрегации и осуществляет их правильное сворачивание внутри полости [Weissman, et al., 1995]

Три возможные варианта структурных форм комплексов GroEL, ассоциированных с ко-шаперонином.

Модели получены методом электронной микроскопии.

А. GroEL без ко-шаперонина.

- B. GroEL, ассоциированный c GroES.
- C. GroEL, связавшийся с двумя ко-шаперонинами.

GroEs

Апикальный домен

Промежуточный домен

Экваториальный домен При анализе генома бактериофага EL *Pseudomonas aeruginosa* впервые был обнаружен ген, кодирующий свой собственный шаперонин. Объекты исследования: вирусный шаперонин *gp146* своего бактериофага phiEL Если бактериальные шаперонины практически одинаковы по длине полипептидной цепи (GroEL *E. coli* – 548 а.о.) и имеют высокую степень гомологии (около 80%) а.о. то Степень гомологии бактериального GroEL с вирусным PG146 (558 а.о.) фага EL существенно ниже (21%). Но гомология на уровне а.о. не обязательна для белков, выполняющих схожие функции. Механизм функционирования фагового шаперонина не выяснен.

Электронная микро-фотография Бактериофагов phiEL и T4 Хвост phiEL 225 нм, T4 120 нм Капсид phiEL 123 нм, T4 85 нм

Электронная микроскопия рекомбинантного gp146. Видны комплексы, лежащие на «торце» и на «боку». Также видна центральная полость. Бар, 50 нм. [Hertveld et al, 2005]. Исследуемые объекты: Известный бактериальный шаперонин GroEL и в комплексе GroEL/ES(кристалл, раствор); И мало изученный вирусный шаперонин gp146 бактериофага phiEL Pseudomonas aeruginosa (раствор).

Экспериментальная часть работы

Проверка раствора белка на монодисперсность методом аналитического ультрацентрифугирования и динамическим светорассеянием.

Малоугловой эксперимент.

Проверка раствора белка на монодисперсность: Аналитическое ультрацентрифугирование. Скоростная седиментация.

Абсорбционная оптическая система детектирования

Динамическое светорассеяние от раствора gp146.

Малоугловой эксперимент

Схема малоуглового эксперимента, установка HECUS, при сканировании по углу при постоянной энергии падающего на образец монохроматического

Сравнение радиусов инерции и максимальных размеров шаперонинов GroEL и комплекса GroEL/GroES с величинами, рассчитанными по известным структурам

Прямое моделирование в прямои пространстве. с размером области D_{max}. Модифицированный метод случайного перебора Конфигураций – метод Матрополиса Имитации отжига

Обычный путь - число параметров велико, форма более детализирована, но решение может быть неустойчиво Численный поиск параметров Модели (а, *b, c*) методом минимизации BFGS Min (*I(s, a_o, b_o, c_o) - I _{exp} (s))*

Предлагаемый подход устойчив, Модель описывается минимальным числом независимых параметров

Вычисление Мах размера частицы из Р(D_{max})=0.

1 путь решения, через вычисление функции парных расстояний P(r) используя PMHK. 2 путь решения, через Выбор геометрической формы частицы и её параметрическое описание (a, b, c).

Теоретическое вычисление

Фурье *F(s)* амплитуды и

Интенсивности рассеяния

Как функции I(s, a, b, c).

🥜 Пусть из эксперимента получена кривая 🖊 _{ехр} (S) 🔪

Поиск формы шаперонинов в растворе методом МУРР

Поиск функции парных расстояний по данным рассеяния: алгоритм регуляризованных наименьших квадратов (РМНК).

11

В методе регуляризации Тихонова ставятся два условия:

-минимизация невязки
$$||Ay - f||^2 = \min_{y}$$

-минимизация нормы решения $||y||^2 = \min_{y}$
вводится условие минимизации салаживающего
dyнкционала: $||Ay - f||^2 + \alpha ||y||^2 = \min_{y} \Phi[y, f];$
 $||\Phi_{\alpha}[|p(r), I(s)] = \frac{1}{N-1} \sum_{i=1}^{N} \frac{1}{\sigma_i^2} [I(s_i) - \int_{0}^{D_{max}} p(r) \frac{\sin(s_i r)}{s_i r} dr]^2 + \alpha \int_{0}^{D_{max}} [\frac{d p(r)}{d r}]^2 dr$
 $p(0) = 0, p'(0) = 0, p'(0) = 0, p(D_{max}) = 0, p'(D_{max}) = 0$
Если а мало, то решение неустойчиво при $\alpha \rightarrow 0$ метод регуляризации Тихонова
переходит в (МНК) с минимальной невязкой $||Ay - f||^2 = \min_{y} \alpha$ и крайне неустойчивым
решением. С увеличением а, решение становится глаже и устойчивей, т.е.
Уменьшается норма решения $||y||^2$ но увеличивается невязка. Задача состоит в

оптимальном сочетании достаточной гладкости при допустимой невязке.

Отметим, что параметризация формы шаперонинов через сферические гармоники не в состоянии передать особенности их структуры (отверстие)

R – радиус эквивалентной сферы.

разрешение

<u>Число параметров модели</u> *f_{Im}* 2(*L*+1). Можно ввести симметрию оставив соответствующие гармоники в сумме

Модель поверхности, шаперонина GroEL Вычислена из экспериментальной кривой рассеяния (см, кривая 2 предыдущий слайд), как суперпозиция *L* = 15 сферических гармоник: а – сбоку; б – вид А (сбоку).

Параметрическое описание формы частицы, с параметрами a,b,c.

Известное точное выражения форм-фактора тора.

используем цилиндрические координаты. В прямом пространстве:

В обратном пространстве:

$$F(r,\alpha,z) = \frac{1}{V'} \iiint_{V'} e^{i(rs_{xy}\cos\alpha + zs_{z})} r \, dr \, d\alpha \, dz = \frac{2\pi}{2\pi^{2} abc} \int_{b-a}^{b+a} \int_{z_{1}}^{z_{2}} e^{izs_{z}} J_{0}(rs_{xy}) \, dz \, r \, dr = \frac{1}{\pi abc} \int_{b-a}^{b+a} \left\{ \int_{-z_{0}}^{z_{0}} e^{izs_{z}} dz \right\} J_{0}(rs_{xy}) \, r \, dr = \frac{1}{\pi abc} \int_{b-a}^{b+a} \left\{ \frac{2}{s_{z}} Sin(s_{z}z_{0}) \right\} J_{0}(rs_{xy}) \, r \, dr = \frac{1}{\pi abc} \cdot \frac{2}{sCos\theta} \int_{b-a}^{b+a} Sin\left(s \cdot c \sqrt{1 - \frac{(r-b)^{2}}{a^{2}}} \cdot Cos\theta} \right) J_{0}(rsSin\theta) \, r \, dr \quad (2.2);$$

Точное выражение для формфактора эллиптического тора:

форм-
о тора:
$$\langle \Phi(sa, sb) \rangle_{\theta} = \int_{0}^{\frac{\pi}{2}} |F(r, \alpha, z)|^{2} Sin \theta d\theta;$$

$$\left\langle \Phi(sa,sb) \right\rangle_{\theta} = \left(\frac{2}{\pi abcs}\right)^2 \int_{0}^{\frac{\pi}{2}} \frac{1}{\cos^2\theta} \left\{ \int_{b-a}^{b+a} Sin\left(s \cdot c\sqrt{1 - \frac{(r-b)^2}{a^2}} \cos\theta\right) J_0(s \cdot r Sin\theta) r dr \right\}^2 Sin\theta d\theta$$

Точное выражение имеет следующие недостатки:

- 1. Использовние этого выражения требует много машинного времени
- 2. из него затруднительно вычислить приближение Гинье и закон Порода.

Takeshi Kawaguchi J. Apple. Cyst.

(2001).34, 580 - 584

Использование форм-фактора тора для решение прямой и обратной задач рассеяния для шаперона GroEL

Шариковая модель, восстановление формы частицы, на примере GroEL как решение обратной задачи рассеяния.

Вывод форм-фактора шаперона как сдвоенного эллиптического тора из форм-фактора одиночного тора

B B I A T ** / **B

Ф(s,
$$\theta$$
) = $\frac{1}{\pi abc} \int_{b-a}^{b+a} \left\{ \int_{-z_1}^{z_1} e^{izs_z} dz + \int_{-z_2}^{z_2} e^{izs_z} dz \right\} J_0(rs_{xy}) r dr$ где $\left\{ z_1 \\ z_2 \right\} = c (1 \pm \delta), \quad \delta = \sqrt{1 - \frac{(r-b)^2}{a^2}}$
 $I(s) = \int_{0}^{\pi/2} |\Phi(sa, sb, \theta)|^2 Sin\theta d\theta;$
Модель GroEL
 $I(s) = \left(\frac{2}{\pi abcs} \right)^2 \int_{0}^{\pi/2} \frac{1}{\cos^2 \theta} \left[\int_{b-a}^{b+a} \left\{ sin(sc(1+\delta) cos \theta) + sin(sc(1-\delta) cos \theta) \right\} J_0(sr sin \theta) r dr \right]^2 sin \theta d\theta (3.1).$

1-кривая МУР по формуле Дебая см.(3.6), от атомной структуры молекулы белка GroEL; 2-кривая от двойного тора (3.1), 3-рассеяние от фф полого цилиндра, см. формула (2.6).

Численный поиск параметров *p_i i=(1,...n)* 23 модели одним из методов минимизации (BFGS) min (*I(s, a,* b, c...) - I ехр (s)) в случае дробной размерности 2.5<D<3 $I_{mod}(s) = \left\langle \Phi(s, \Omega) \right\rangle_{\Omega} = \frac{N}{V'} \left\langle \left| \int_{V'} \rho_e(r) \exp i(s, r) \, dV' \right|^2 \right\rangle_{\Omega}$ $\mathbf{d}\rho_{\mathbf{D}}(\mathbf{r}) = \frac{2^{3-\mathbf{D}}\Gamma(3/2)}{\Gamma(\mathbf{D}/2)} \cdot |\rho|^{\mathbf{D}-3} \mathbf{d}\mathbf{V}$ $I(s)_{\text{mod}} = \left(\frac{2}{\pi ab c s}\right)^2 \int_{0}^{\pi/2} \frac{1}{\cos^2 \theta} \left[\int_{0}^{b+a} \left(\sin(sc(1+\delta)\cos\theta) - \sin(sc(1-\delta)\cos\theta)\right) J_0(sr\sin\theta) r^{D-2} dr\right]^2 \sin\theta d\theta$ 10[°] $\delta = \sqrt{1 - \frac{(\mathbf{r} - \mathbf{b})^2}{\mathbf{a}^2}}$ эксперимент GroEL l(s) в растворе Геометрические — модель пншенсивносшь, ошн. ед. 10⁻² 10⁻³ параметры о pacчет от pdb моделей структуры GroEL макромолекулы модель GroEL: а = 2.7нм b = 5.6 нм с = 2.9 нм 10⁻⁴ а = 2.3нм b = 4.5нм 0.00 0.25 0.50 0.751.50 2.00 1.00 1.25 1.75 с = 4.1нм s, нм⁻¹

SAXS эксперимент на СИ накопителя DORIS г. Гамбург, Станция X33

Поиск различных конформаций вирусного шаперонина gp146 в растворе.

Моделирование аминокислотными остатками белка gp146 в «исходном» буфере вид А "частично открытая форма» в разрезе, В-вид сбоку, С - вид сверху, D - вид снизу.

Обобщение ранее полученных Формфакторов на случай форм-фактора двойного эллиптического несимметричного тора - 5 параметров модели.

$$I(s)_{tt} = \left(\frac{2}{\pi a b c s}\right)^2 \int_0^{\pi/2} \frac{1}{\cos^2 \theta} \begin{cases} b+a_1 \\ \int_{b-a_1}^{b+a_1} \left[F_1(sc_1, \delta_1(r), \theta) r \, dr + \int_{b-a_2}^{b+a_2} F_2(sc_1, \delta_2(r), \theta) r \, dr \right]^2 \end{cases} \sin \theta \, d\theta; \quad F_1(sc_1, \delta_1(r), \theta) = \sin(sc_1(1+\delta_1)\cos \theta) \cdot J_0(sr\sin \theta)$$
$$F_2(sc_1, \delta_2(r), \theta) = \sin(sc_2(1-\delta_2)\cos \theta) \cdot J_0(sr\sin \theta)$$

$$\delta_{1,2} = \sqrt{1 - \frac{(r-b)^2}{(a_{1,2})^2}};$$

gp146, модель – несимметричные торы

$$b = 50A$$

$$c_1 = 40A$$

$$a_1 = 11A$$

$$a_2 = c_2 = 30A$$

Схема работы шаперонина II группы, без ко-фактора.

Шаперонины группы II не имеют ко-шаперонина, но апикальные домены несут выступы, способные принять конформацию, при которой внутренняя полость будет закрыта

Изменения, происходящие с ССТ при добавлении АТР. Происходит изменение положения и конформации доменов, и комплекс из открытой формы переходит в закрытую [Banach et al, 2009].

Модель открытой конформации

Малые белки теплового шока

α-Кристаллины (HspB4, HspB5)

Некоторые свойства малых белков теплового шока

человека

Kappe et al., Cell Stress & Chaperone, 8, 53-61, 2003 Vos et al., Biochemistry, 47, 7001, 2008

Название	Количество	Мол.	pI	Хромосома
	UCIAIKUB	масса		
HspB1 (Hsp25/27)	205	22.8	6.4	7q11.2
HspB2 (MKBP)	182	20.2	4.8	11q22-q23
HspB3	150	17.0	5.9	5q11.2
НѕрВ4 (αА-кристаллин)	173	19.9	6.2	21q22.3
НѕрВ5 (αВ-кристаллин)	175	20.2	7.4	11q22.3-q23.1
HspB6 (Hsp20)	157	16.8	6.4	19q13.1
HspB7 (cvHsp)	170	18.6	6.5	1р36.23-р34.3
HspB8 (Hsp22, H11)	196	21.5	4.7	12
HspB9	159	17.5	9.0	17q21
HspB10 (ODF1)	250	28.4		8q22

Зависимость прозрачности хрусталика от взаимодействия α- и γ-кристаллинов

Takemoto, Sorensen, Exp. Eye Res. 2008

На верхнем рисунке схематически показано прочность взаимодействия αи у-кристаллинов (увеличение прочности взаимодействия слева направо).

На среднем рисунке схематично показано изменение прозрачности хрусталика

На нижнем рисунке показано взаимодействие α- и γ-кристаллинов. При слабом взаимодействии (А) возможно образование крупных олигомеров α-кристаллинов; при среднем по прочности взаимодействии (В) кристаллины равномерно располагаются в хрусталике; при очень прочном взаимодействии (С) образуются агрегаты α-и γкристаллинов.

t=20° C.

- "экспериментальные точки
- сглаженная экспериментальная кривая
 - с апроксимацией к "нулевому углу рассеяния" I(0)"

Прямое моделирование в прямом пространстве с размером области D_{max} на основе модифицированного метода случайного перебора с единичным элементом структуры: «шарик – атом».

Моделирование фракции 2 по Формфактору трёхосного эллипсоида

$$\mathbf{k}(\mathbf{x},\mathbf{y}) = \sqrt{\left(\mathbf{a}^{2}\cos^{2}\left(\frac{\pi}{2}\mathbf{x}\right) + \mathbf{b}^{2}\sin^{2}\left(\frac{\pi}{2}\mathbf{x}\right)\right)\left(1 - \mathbf{y}^{2}\right) + \mathbf{c}^{2}\mathbf{y}^{2}}$$
$$\mathbf{I}_{\text{mod}}(s) = 9\int_{0}^{1}\int_{0}^{1}\left[\frac{\sin(sk(x,y)) - (sk(x,y))\cos(sk(x,y))}{(sk(x,y))^{3}}\right]^{2}dx \, dy = 9\int_{0}^{1}\int_{0}^{1}\left[\frac{j_{1}(sk(x,y))}{sk(x,y)}\right]^{2}dx \, dy$$

Спасибо за внимание.