

Роль антиферромагнитной прослойки в формировании магнитного упорядочения в сверхрешетках Fe/Cr/Gd

Кравцов Е. А., Рябухина М.В.

Совещание по Малоугловому Рассеянию Нейтронов «МУРомец-2016», Гатчина, 28 сентября 2016 г. Гигантское магнетосопротивление в сверхрешетках Fe/Cr : Нобелевская премия - 2007

Сверхрешетки РЗМ/ПМ

Сверхрешетки Fe/Gd как модельная система

 T_c (bulk Fe) = 1043 K T_c (bulk Gd) = 289 K

•Сильная температурная зависимость намагниченности Gd

•Сильное обменное взаимодействие внутри Fe

•Сильное обменное взаимодействие Fe-Gd

•Относительно слабый обмен внутри Gd

•Индуцированные магнитные моменты вблизи интерфейсов в Gd

Новые идеи 1: управление обменным взаимодействием Fe-Gd с помощью антиферромагнитных прослоек

Роль антиферромагнитной прослойки:

- Индуцирует магнитный момент в Gd при комнатной температуре
- Изменение магнитного упорядочения Fe-Gd на ферромагнитное
- Система с большим магнитным моментом при комнатной температуре

Further ideas: управление обменным взаимодействием Fe-Gd с помощью прослойки Cr

Forcing Ferromagnetic Coupling Between Rare-Earth-Metal and 3d Ferromagnetic Films

Biplab Sanyal,^{1,*} Carolin Antoniak,² Till Burkert,¹ Bernhard Krumme,² Anne Warland,² Frank Stromberg,² Christian Praetorius,³ Kai Fauth,³ Heiko Wende,² and Olle Eriksson¹

PHYSICAL REVIEW LETTERS

¹Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
²Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany
³Faculty of Physics and Astronomy, University of Wirzburg, Am Hubland, 97074 Wirzburg, Germany (Received 6 December 2009; published 15 April 2010)

PRL 104, 156402 (2010)

week ending

16 APRIL 2010

Fe-Gd магнитное упорядочение можно контролировать используя прослойку из антиферромагнитного Cr

Магнетизм сверхрешеток [Fe(35 Å)/Cr(4.4 Å)/Gd(50 Å)/Cr(4.4 Å)]₁₂

PRL 104, 156402 (2010) PHYSICAL REVIEW LETTERS

week ending 16 APRIL 2010

Forcing Ferromagnetic Coupling Between Rare-Earth-Metal and 3d Ferromagnetic Films

Biplab Sanyal,^{1,*} Carolin Antoniak,² Till Burkert,¹ Bernhard Krumme,² Anne Warland,² Frank Stromberg,² Christian Praetorius,³ Kai Fauth,³ Heiko Wende,² and Olle Eriksson¹

¹Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden ²Faculty of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany ³Foodta of Physics and Astronomy University of Wiseburg, Commun.

³Faculty of Physics and Astronomy, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (Received 6 December 2009; published 15 April 2010)

Введение прослойки в 3 ML Cr кардинально изменяет магнитной поведение

Рентгеновская рефлектометрия в Fe/Gd, Fe/Cr/Gd

Хорошо определенная слоистая структура, rms ~ 1-3 Å

Рентгеновская дифракция при скользящем падении

В Fe/Cr/Gd возникает новая фаза ГЦК Gd фаза с уменьшенным Магнитным моментом

Рефлектометрия поляризованных нейтронов

$$R_{++} - R_{--} \propto M_{\parallel}$$

 $R_{+-} = R_{-+} \propto M^2_{\perp}$

Проблема при работе с Gd

RESONANCE EFFECTS IN NEUTRON SCATTERING LENGTHS OF RARE-EARTH NUCLIDES

J. E. LYNN* and P. A. SEEGER

Los Alamos National Laboratory Los Alamos, New Mexico 87545

and

Argonne National Laboratory Argonne, Illinois 60439

Gd SLD сильно зависит от длины волны в термальной области

PNR @ RT

Качественно магнитный порядок при комнатной температуре одинаков Fe/Gd и Fe/Cr/Gd

PNR @ T=15 K

Принципиально разное магнитное упорядочение при низких температурах

Профили намагниченности в Fe/Gd и Fe/Cr/Gd

	T, K	m _{Gd} , μ _B			m_{Fe},μ_B	α_{Gd}	α_{Fe}
Fe/Cr/Gd	15	7	4	7	2.2	180	0
	300	1	0	1	2.2	180	0
Fe/Gd	15	7	4	7	2.2	180	0
	300	3	0	3	2.2	0	180

Введение только 3 ML Cr намного уменьшает магнитный момент Gd

Выводы:

- Введение прослойки Cr приводит к возникновению ГЦК фазы Gd в Fe/Cr/Gd
- Для новой фазы характерно наличие уменьшенного магнитного момента
- Индуцированный момент вблизи интерфейсов в Gd возникает
- Система Fe/Cr/Gd не лучший выбор для поиска наноматериалов с большим магнитным моментом