А.А. Быков, Д.М. Гохфельд, А.А. Мистонов, С.И.Попков, С.В. Григорьев.

СВЕРХПРОВОДИМОСТЬ ВТОРОГО РОДА В ИНВЕРТИРОВАННЫХ ОПАЛАХ ОЛОВА

введение

ОБРАЗЦЫ

$$\rho_{\text{IOLS}} = \rho_{RHCP_Voids} + \rho_{\text{Sintering}} \qquad d_{\text{O}} = 0.414\text{D}$$
$$= \rho_{RHCP_Voids} + \rho_{RHCP} \left(\frac{V_r - V_{r'}}{V_r}\right) = 1 - \rho_{RHCP} \left(\frac{r'}{r}\right)^3 \qquad d_{\text{D}} = 0.225\text{D}$$
$$d_{\text{b}} = 0.155\text{D}$$

200µm Electron Image 1

МУРН И USAXS

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ

ПЕТЛЯ НАМАГНИЧЕННОСТИ

ПЕТЛИ НАМАГНИЧЕННОСТИ

 $\begin{array}{l} \text{Sn}_{160} \ \chi = 21{\cdot}10^{\text{-5}} \\ \text{Sn}_{300} \ \chi = 0.22{\cdot}10^{\text{-5}} \end{array}$

ФАЗОВЫЕ ДИАГРАММЫ

	нм	нм	нм	а.ю	нм	нм	нм	нм	нм
Тип образца	Размер сферы SiO2	Размер сферической пустоты до спекания	Размер сферической пустоты после спекания	Безразмерная плотность	Размер октаэдра	Размер тетраэдра	Размер цилиндра	Размер Hm1	Размер Hm2
Sn160	160	193	182	0,37945	66	37	24	170	79
Sn300	300	289	231	0,6221	123	69	45	228	141
Bi300	300	300	211	0,74254					

 $R \approx \sqrt{\frac{n\Phi_0}{\pi H}}$

СИЛА ПИНИНГА

выводы:

- Методами МУРН и USAXS исследованы ИОПС на основе висмута и олова. Проведены измерения М(Н) и R(Т).
- Для всех образцов обнаружены уширенные в поле сверхпроводящие переходы, а также для Sn ИОПС ассиметричный гистерезис петель намагниченности.
- На петлях намагниченности для Sn образцов присутствуют пики, характерные поля которых соответствуют размерам сферических пустот и октаэдрических элементов ИОПС.
- При исследовании петлей намагниченности применена расширенная модель критического состояния, определены критические токи и полевые зависимости силы пининга.
- Тип пининга определен как пиннинг на нормальной фазе сферической пустоты, возможно с дополнительным для Sn₁₆₀ пиннингом отталкивания от границы в октаэдрическом элементе ИОПС.
- При уменьшении характерного размера структурных элементов ИОПС обнаружено увеличения значений T_c, H_{c2} и j_c, а также измерение типа сверхпроводимости с первого на второй.
- Построены фазовые диаграммы критические поля температуры для оловянных образцов.

СПАСИБО ЗА ВНИМАНИЕ.