Петербургский институт ядерной физики им. Б.П. Константинова

Исследование силикатных пленок, допированных наночастицами Pt и Pt/Pd, методом рентгеновской рефлектометрии

Губанова Н.Н., Матвеев В.А.

ПИЯФ НИЦ КИ, Гатчина ИХС РАН, Санкт-Петербург

Татчина-2015

Что из себя представляют пленки: силикатная матрица (SiO2)n + наночастицы Pt или Pt/Pd *толщина от <u>нм</u> до <u>мкм</u>*

<u>Применение:</u>

1. Катализаторы

SO2+O2 $\stackrel{kat}{\longrightarrow}$ SO3 (окисление) алкан $\stackrel{kat}{\longrightarrow}$ циклоалкан+H2 (ароматизация) NH3+O2 $\stackrel{kat}{\longrightarrow}$ NO+H2O (пр-во азотной к-ты) гидрирование жиров (пр-во маргарина) и мн.др. **2. электроды топливных элементов** H2+O2 $\stackrel{kat}{\longrightarrow}$ H2O

3. *газовые сенсоры* (чувствительный элемент) (СО, углеводороды, оксиды азота)

Переход от мелкодисперсной Pt и Pd к наночастицам

Преимущества:

- Использование меньшего количества платины и палладия– <u>дешевизна</u> (1100\$/унц. Pt и 1205\$/унц. Pd)
 - Большая каталитическая поверхность – <u>увеличение</u> <u>выхода продукта реакции</u>

Схема синтеза пленок (по золь-гель технологии)

Золь-гель технология микро- и нанокомпозитов: учебное пособие / Под ред. О.А.Шиловой. Авторы: Мошников В.А., Таиров Ю.М., Хамова Т.В., Шилова О.А. — СПб.: Изд. «Лань», 2013. 304 с.

Варьируемые параметры:

- 1. Концентрации исходных реагентов (ТЭОС, солей платины и палладия)
- 2. Длительность созревания золя (от 1 недели до 5 лет)
- 3. Температура термообработки (фиксации) пленок (250, 450, 550 C)

Исследование пленок различными методами:

- ✓ Первичная оценка свойств пленок невооруженным глазом
- Макроморфологическая съемка поверхности пленок (микроскоп световой)

(LCDMicro (Bresser) ×400 раз, зеленый светофильтр)

✓ Оценка поверхности пленок методом атомно-силовой микроскопии (микроскоп Solver Bio (NT-MDT, ПИЯФ, Гатчина)

АСМ-изображения поверхности пленок

АСМ изображения в режиме фазового контраста поверхности пленок

 ✓ Определение фазового состава пленок методом рентгенофазового анализа (порошковый рентгеновский дифрактометр D8-Advance «Bruker» (ИХС РАН, Санкт-Петербург)
№ Pd Pd
PdO Pd Pd

Pd	образец 1Pt/3Pd/96Si		образец 1Pt/5Pd/94Si		образец 1Pt/10Pd/89Si		образец 1Pt/20Pd/79Si	
	(111)	(200)	(111)	(200)	(111)	(200)	(111)	(200)
ри 20 С	8,2	7,3	8,5	6, 4	9,1	5,4	9,8	-
ополнительный тжиг при 250 С	16,7	12,0	19,5	12,0	20,0	15,4	28,6	-

PdO	образец 1Pt/3Pd/96Si		образец 1Pt/5Pd/94Si		образец 1Pt/10Pd/89Si		образец 1Pt/20Pd/79Si	
	(101)	(112)	(101)	(112)	(101)	(112)	(101)	(112)
дополнительный отжиг при 250 С	14,7	5,3	15,2	5,7	12,5	8,4	12,5	5,7

	D _{OKP} , HM						
	Образо	ование	Образ	ование	Образование		
Dt	ксерогеля	а при 20 С	ксерогеля при 80 С		ксерогеля при 120		
Pt					С		
	(111)	(200)	(111)	(200)	(111)	(200)	
	амор	амор	7 2+0 7	6 6+0 7	8 0+0 8	7 0+0 7	
	ф	ф	7,210,7	0,010,7	0,010,0	7,010,7	
Дополнитель ный отжиг при 250 С	5,3±0,5	4,4±0,4	7,2±0,7	6,4±0,6	-	-	

 ✓ Определение валентного состояния и степени окисления Pt методом оптической спектроскопии (спектры поглощения УФ и видимой области) (спектрофотометре СФ-56(ИХС РАН, Санкт-Петербург)

- Определение размера частиц и расстояния между ними с помощью GISAXS
- Просвечивающая и сканирующая микроскопия мн. др. методы !!!!!

Рентгеновская рефлектометрия

Отражение от тонкой пленки

$2d\sin\theta = n\lambda$

Отражение от системы слоев

Шероховатость

Распределение электронной плотности по толщине пленки.

Параметры образцов, полученные из данных рентгеновской рефлектометрии для пленок с соотношением 20Pt/80Si

Условное обозначение образца	d, Å	ρ _e , Å ⁻³	σ, Å
20Pt/80Si/3	256±10	0.618±0.046	16±2
20Pt/80Si/3-450	198±16	0.643±0.046	15±2
20Pt/80Si/3-550	205±7	0.629±0.043	14±2
20Pt/80Si/3-old	417±8	0.575±0.054	16±2
20Pt/80Si/5	422±10	0.614±0.050	16±2
20Pt/80Si/10	830±28	0.646±0.464	10±2
20Pt/80Si/1	80±17	0.618±0.464	12±3
20Pt/80Si/1-450	62±36	0.679±0.054	8±3
20Pt/80Si/1-550	57±12	0.625±0.039	16±3
20Pt/80Si/1-old	132±16	0.654±0.050	10±3

Экспериментальные (точки) и расчетные (линии) зависимости коэффициента отражения R от переданного

Параметры образцов, полученные из данных рентгеновской рефлектометрии для пленок с соотношением 60Pt/40Si

Условное обозначение образца	d, Å	ρ _e , Å ⁻³	σ, Å
60Pt/40Si/1	141±25	0.686±0.039	19±2
60Pt/40Si/1-450	<45	_	~12
60Pt/40Si/1-550	62±11	0.582±0.043	6±3
60Pt/40Si/1-old	163±30	0.675±0.043	21±2

Двухслойная модель

Условное обозначение образца	d ₁ , Å	ρ _{e 1} , Å- ³	σ ₁ , Å	d ₂ , Å	ρ _{e 2} , Å ⁻³	$\sigma_1^{},$ Å
60Pt/40Si/3	103±6	0.975±0.096	23±2	215±5	0.600±0.125	70±2
60Pt/40Si/3-450	47±14	1.643±0.211	16±3	201±54	0.732±0.496	27±14
60Pt/40Si/3-550	66±10	1.640±0.211	15±2	224±17	0.829±0.236	21±9
60Pt/40Si/3-old	~150		~15			

Спектроскопия обратного резерфордовского рассеяния (RBS).

Глубинные профили концентраций Pt и Si, полученные с помощью метода RBS

Глубинные профили концентраций атомов Si и Pt для пленок различного состава.

В приповерхностных слоях пленки концентрации атомов Pt выше, чем в слоях находящихся вблизи подложки.

Экспериментальные (точки) и расчетные (линии) зависимости коэффициента отражения R от переданного волнового вектора *q*.

Распределение электронной плотности по толщине пленки.

Параметры образцов, полученные из данных рентгеновской рефлектометрии пленок содержащих Pd

Условное обозначение образца	d, Å	ρ _e , Å ⁻³	σ, Å
1Pd/99Si/3	204±21	0.657±0.043	16±3
3Pd/97Si/3	206±23	0.668±0.043	21±3
5Pd/95Si/3	211±23	0.671±0.043	20±3
10Pd/90Si/3	215±35	0.664±0.036	35±4
20Pd/80Si/3	203±26	0.679±0.036	32±3
20Pt/1Pd/79Si/3	225±19	0.661±0.036	21±3
20Pt/3Pd/77Si/3	252±72	0.700÷0.582	24±5
20Pt/5Pd/75Si/3	309±67	0.732÷0.496	22±7
20Pt/10Pd/70Si/3	287±74	0.721÷0.607	25±4
20Pt/20Pd/60Si/3	339±54	0.732÷0.479	23±8
1Pt/3Pd/96Si/3	204±22	0.650±0.043	15±3
1Pt/5Pd/94Si/3	230±24	0.654±0.036	23±3
1Pt/10Pd/89Si/3	203±24	0.657±0.036	22±3
1Pt/20Pd/79Si/3	215±22	0.643±0.032	28±3

Заключение

• Метод рентгеновской рефлектометрии позволят получать информацию о слоистой структуре силикатных пленок содержащих наночастицы Pt и Pt/Pd.

• Используемая методика золь-гель синтеза позволяет получать тонкие Pt- и Pt/Pd-содержащие силикатные пленки, с малой шероховатостью.

• Выявлена зависимость параметров пленок от условий синтеза (концентрации реагентов в золе, термической обработки, длительности созревания золей).

• На поверхности образцов пленок обнаружены макропоры, радиус которых 2-4 мкм и мезопоры радиусом ~20-30 нм.

• В некоторых образцах пленок (серия 20Pt/80Si/3 и 60Pt/40Si/3) наблюдается неравномерное распределение Pt по толщине, с повышенной концентрацией в верхнем слое.

<u>Публикации</u>

Шилова О.А., Губанова Н.Н., Матвеев В.А., Байрамуков В.Ю., Кобзев А.П. Состав, структура и морфология поверхности наноразмерных платиносодержащих пленок, получаемых из золей. Физика и химия стекла, 1, 2016 (принята в печать)

<u>Благодарности</u>

Шилова О.А., Иванов А.Г., Арсентьев М.Ю. – Институт химии силикатов, СПб Байрамуков В.Ю., Уклеев В.А. – НИЦ КИ ФГБУ ПИЯФ, Гатчина

Кобзев А.П. – Объединенный институт ядерных исследований, Дубна

Спасибо за внимание!