

Петербургский институт ядерной физики им. Б.П.Константинова, НИЦ Курчатовский институт, г. Гатчина Ленинградской обл.

Лаборатория нейтронных физико-химических исследований

Атомные и надатомные корреляции в углеродных структурах по данным рентгеновского и нейтронного рассеяния

Лебедев В.Т., Совестнов А.Е., В.И.Тихонов

Объекты - многоуровневые углеродные структуры, инкапсулирующие атомы металлов

Синтез: температурные превращения дифталоцианинов металлов при пиролизе в инертной атмосфере

Варьирование температуры отжига

- Последовательное удаление легких атомов: водород, азот, кислород
- Формирование углеродных оболочек вокруг атомов металлов
- Возможно образование ячеек размера ~ исходного диаметра молекул-прекурсоров + формирование системы наноразмерных пор
- Дифракция рентгеновских лучей
- + малоугловое рассеяние нейтронов
- Анализ данных в прямом и обратном пространствах
- Модели аморфных матриц с элементами эндоэдральной координации атомов лантаноидов и актиноидов с углеродным окружением

Дифталоцианины – прототипы ультрапористых структур углерода

Строение дифталоцианина Nd, межатомные расстояния и углы в лиганде

- □ Макрогетероциклические соединения
- Распространены в природе, биологические функции фотосинтез, дыхание (хлорофилл, гем крови)
- фотолюминесцентные свойства, π-электронное сопряжение
 Основа для получения перспективных
- 🖵 материалов (пигменты, полупроводники, сенсоры, катализаторы)
- 🖵 высокая устойчивость к температурным и химическим воздействиям

Атом металла попадает в прочную молекулярную оболочку при замыкании краев «клетки», если связать лиганды по периферии Инкапсулирование и хранение нуклидов (распад, трансмутация) !

Внедрение радионуклидов и трансплутониевых элементов в углеродные матрицы (для трансмутации)

Пиролиз дифталоцианинов в аргоне

В.И.Тихонова (ОФВЭ, ПИЯФ)

- Эффективность внедрения радионуклидов в матрицу: 100% (>99 %) для Eu, Tc, Am и 85-90% - для йода
- Термическая устойчивость
- Состав матрицы после пиролиза в вес. процентах: при внедрении йода : I – 12-15, Y – 18-20, N – 1,5-2, H – 0,1, остальное – С(63-68) при внедрении радионуклидов (Y, Tc, Eu, Am) – 18-20, N – 1.5-2, H – 0.1, C – 78-80
- Синтез углеродных матриц с внедрением Eu, Re, I, Tc, Am

Доля улетучивания радионуклидов благородных газов из облучённого протонами UC_x в вакууме в зависимости от температуры (выдержка при каждой температуре – 1 час). Радиусы атомов Kr, Xe и Rn : 2.01, 2.2 и 2.4 A°

Установка пиролиза Проблема иммобилизации РАО

1 – реактор (кварц), 2 – кожух реактора, 3 – насадка для улавливания паров фталонитрила,
4 – электрическая трубчатая печь, 5 – фильтр грубой очистки, 6 – фильтр тонкой очистки, 7 – термопара (ХА),
8 – «горячая» камера Остекловывание: боросиликатное и фосфатное стекло, металлокерамика, высокотемпературная керамика

ПИЯФ (Тихонов В.И.): радионуклиды Am-241, Eu-152, Tc-99, I-125 - пиролиз в инертной среде (аргон) дифталоцианинов металлов (ДФЦ), получены структуры MeC_x (x=35-40), заключающие атомы металла

- Синтез ДФЦ радионуклида, пиролиз превращение в клетку из атомов углерода с атомом ДРН
- Выделение радионуклидов из клетки пороговый характер, размеры «окон» углеродной ячейки малы, атом ДРН не может ее покинуть, пока она не разрушится
- Повышение температуры последовательное формирование частиц размерами 5-7нм, 30-50нм, 120-15нм и крупных агрегатов с признаками фрактальности
- 4. Пиролиз при температуре 850-900 °С приводит к образованию бесструктурной модификации, при температуре выше 1200 °С начинается образование различных кристаллических фаз в зависимости от элемента
- Для пиролизатов Y, Sm и U проведена оценка внутреннего объёма пустот, величина которых зависит от элемента - от 30% всего объёма для урана, до 50% для иттрия

Зависимость выделения элементов от температуры

Пороговый характер удержания атомов тяжёлых элементов в матрице

1200-1250 °C

Структурная перестройка с потерей массы (10%)

Разрушение закрытых углеродных ячеек

Как идет пиролиз?

 Pc_2 Y при различных температурах пиролиза (сканирование 3×3 µт): A – исходные кристаллы Pc_2 Y; B – пиролиз при 790°C; C – при 850°C; D – при 1040°C

Рис. 2В ДФЦ иттрия пиролизованный при 1000°С на подложке поликристаллического кремния. Размер изображения 2×2мкм

Рис. ЗА ДФЦ иттрия пиролизованный при 1300°С на подложке поликристаллического кремния. Размер изображения 60×60 мкм

Рис. ЗБ ДФЦ иттрия пиролизованный при 1300°С на подложке поликристаллического кремния. Размер изображения 1×1 мкм

Рис. ЗВ ДФЦ иттрия пиролизованный при 1300°С на подложке поликристаллического кремния. Размер изображения 1×1 мкм

ДФЦ иттрия

Вакуумное напыление на сапфировое стекло

Полидисперсные кристаллы устойчивы к пиролизу до **500°С**

Деструкция *Рс*₂*Y* с формированием аморфной фазы > 750°С

АСМ изображения Деструкция и переход кристаллической фазы в аморфную

Образуются агрегаты сферических частиц

Рис. 1А. ДФЦ иттрия, осажденный на поликристаллический кремний. Размер изображения 10×10 мкм

Рис. 1В. ДФЦ иттрия, пиролизованный при 1300°С на подложке поликристаллического кремния. Размер изображения 10×10 мкм

Рис. 1Б. ДФЦ иттрия, пиролизованный при 1000°С на подложке поликристаллического кремния. Размер изображения 10×10 мкм

Рис. 1Г. ДФЦ иттрия, пиролизованный при 1600°С на подложке сапфирового стекла. Размер изображения 10×10 мкм

Рис. 2А. ДФЦ иттрия, пиролизованный при 1000°С на подложке поликристаллического кремния. Размер изображения 1×1 мкм

Рис. 2Б. ДФЦ иттрия, пиролизованный при 1000°С на подложке поликристаллического кремния. Фазовое изображение. Размер изображения 1×1 мкм

АСМ-изображение пиролизата иттрия. Поле скантрования 60×60 мкм. Т=1300°С

Лебедев В.М., Лебедев В.Т., Орлова Д.Н., Тихонов В.И. Исследование структуры углеродных матриц для хранения радионуклидов методом малоуглового рассеяния нейтронов. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования" 2014. № 5. С. 5-11. *А.Е. Совестнов, В.К. Капустин, В.И. Тихонов, Э.В. Фомин, Ю.П. Черненков.* Эволюция атомарного порядка и валентного состояния редкоземельных атомов и урана в новом металлоуглеродном композите — пиролизате дифталоцианина C64H32N16*Me* (*Me* =Y, La,Ce, Eu и U) // *ФТТ, 2014, т. 56, вып. 8, С.16* Пиролизаты - ультрапористые материалы Площадь поверхности пор до ~ 1000 м²/г

SANS, анализ фрактальных свойств системы пор сложной топологии SANS «Мембрана» (ПИЯФ)

- Структура углеродных матриц продуктов пиролиза дифталоцианинов с инкапсулированными атомами Y, Sm, U
- Строение пористой матрицы на масштабах 10⁰ 10² нм характеризуется двумя уровнями:

малые поры с характерными радиусами ~ 3 – 6 нм
 агрегаты размерами ~ 40 – 100 нм и выше

 Данные рассеяния в согласии с величинами плотности образцов и объема пор в матрицах

<u>SANS «МЕМБРАНА-2»</u>

1 – нейтроновод поляризатор, 2 – флиппер, 3 – магнитный резонатор Драбкина, 4
 – нейтроновод-анализатор, 5 – вакуумный объем перед образцом, 6 – образец, 7 –
 2D-детектор, 8 – вакуумный объем между образцом и детекторов в сборке с
 блоком линейного детектора, 9 – платформа.

<u>Характеристики образцов</u>

Трансмиссия Tr , Толщина образцов d_s, Макроскопическое Сечение Σ, Плотность пиролизатов ρ, Объемная доля углерода φ_n

Образец	d _s , мм	Tr	Σ, см-1	р, г/см ³	φ _p
UC	3	0.61	1.65	~ 1.8	0.34
UC	1	0.86	1.57	~ 1.8	0.34
SmC–50 мкм	1	0.49	7.13	1.66	0.39
SmC–25 мкм	1	0.55	5.98	1.66	0.39
YC	1	0.95	0.51	1.25	0.51

Трансмиссия $Tr = exp(-\Sigma \cdot d_S)$

Ослабление пучка: рассеяние за пределы центрального счетчика + поглощение нейтронов, определяемое хим. составом образца В сумме - макроскопическое сечение $\Sigma = -(1/d_s)ln(Tr)$

Формирование структуры пиролизатов

SANS на порошках поролизатов с элементами: 1- Y; 2 – Sm; 3 – U

Температура отжига 1300 °С

 $\sigma(q) = \sigma_r [1 + (qr_c)^2]^{-2} + J/q^{Df}$ 800 - 1300 °C

Формирование агрегатов

Масштаб агрегации r_c достигает максимума

Параметр о_г пропорционален объемной доле и массе агрегатов

Температурная зависимость сечений для пиролизатов иттрия

Спектры образцов **YC**_X, отожженных при **850°C**; **1350°C;1700°C a**) $\sigma_{\rm m}(q)$. Аппроксимация данных функцией $\sigma(q) = \sigma_{\rm r} [1 + (qr_{\rm c})^2]^{-2} + J/q^{\rm Df}$ **b**) данные рассеяния в представлении Порода

<u>Y-ПИРОЛИЗАТ:</u> Температурная зависимость параметров функции $\sigma(q) = \sigma_r [1 + (qr_c)^2]^{-2} + J/q^{Df}$

- (a) радиус корреляции r_с для агрегатов малых ячеек
- (b) сечение рассеяния агрегатов $\sigma_r = \sigma(q \rightarrow 0)$
- (с) коэффициент Ј рассеяние от фрактальных структур
- (d) фрактальная размерность D_f

Малые поры - фрактальные агрегаты *D_f* = 2.57±0.01

Зависимость радиуса корреляции агрегатов от атомного радиуса инкапсулированных элементов

Элементы кроме U

Размер агрегатов *r_c* Атомный радиус элемента *R_A*

Линейная зависимость

Малые ячейки - радиус $r_c = 2,5 - 6,7$ нм растет при переходе от легкого к тяжелому атому Объем поры увеличиваются от $V_c \sim 70 - 90$ нм³ до $V_c \sim 1000$ нм³ при замене Y и Sm на U Ячейки в пиролизатах Y и Sm организованы в крупные агрегаты > 100 нм Для Y - сплошные образования Для Sm – разветвленные (фрактальные) структуры, D ~ 2.6 ; 2.8

Образец	Радиус агрегатов <mark>R_C, нм</mark>	Фрактальный показатель, D	Радиус ячеек, г _С , нм
UC (3мм)	40.5 ±1.4	3.36 ±0.04	6.07 ±0.07
UC(1мм)	55.6 ±4.0	3.26 ±0.04	6.65 ±0.16
SmC-50мкм	> 100	2.64 ±0.06	3.93 ±0.05
SmC-25мкм	> 100	2.82 ±0.14	3.74 ±0.07
YC	> 100	3.00 ±0.02	2.45 ±0.02

Пример упаковки частиц большого и малых радиусов

Образец UC_x Иной тип упорядочения

Ячейки образуют глобулярные агрегаты, радиус R_C ~ 60 HM на порядок выше размера ячейки

Число ячеек в агрегате

 $(\sigma_{\rm R}/\sigma_{\rm r}) \approx N_{\rm cell} \approx 380$

согласуется с оценкой из размеров частиц α(R_C/r_C)³ ≈ 430

(α = 0,74 - плотная упаковка сфер)

D = 3.26

Границы агрегатов - дефектные Поверхности с фрактальной размерностью D_S = 6 − D ≈ 2.7 Анализ кристаллической структуры и электронного строения ДФЦ редких земель и урана $C_{64}H_{32}N_{16}Me$ (Me = Y, La, Ce, Eu и U) Пиролиз при 800-1100 °C и >1200 °C

800°C

Деструкция ДФЦ, перестройка структуры – из кристаллической для ДФЦ в аморфную для пиролизата

Начинает формироваться графитоподобная структура

Доля Ме возрастает в 1,5-3 раза по сравнению с сод. в С₆₄H₃₂N₁₆Me – до 13% для иттрия, до 20-30% для лантанидов и 50% для урана

Нейтроно- и рентгенограммы пиролизатов ДФЦ иттрия (эксперимент) и кристаллов нитрида иттрия, YN (расчет по FullProf)

Рентгенограммы CeO_2 и пиролизатов Ce и U (эксперимент), а также CeC_2 (расчет по FullProf)

Системы с церием и ураном: видимо, еще на стадии синтеза ДФЦ образуются диоксиды CeO_2 , UO_2

Для сравнения с пиролизатами – углерод

Интенсивность рассеяния **I_s(q)** в зависимости от импульса: (а) – исходные данные (b) – после удаления вкладов пиков от кристаллической фазы

Кривые – функции рассеяния, отвечающие восстановленным спектрам корреляций

Графит с разной степенью совершенства: выраженная кристаллическая структура (а); аморфно-кристаллический образец №1 (b). *G*(*R*), arb. un.

в образце №1 (а) Спектр для аморфной фазы (b) Межплоскостные расстояния в структурах типа графита Масштаб ближнего порядка в аморфной фазе (d_A)

Наблюдаемые области имеют близкие радиусы инерции, $R_{GA} \approx R_{GC} \approx 0.40-0.41$ нм Сфера-кристаллит радиус $R_{CR} = (5/3)^{1/2}R_{GC} \approx 0.5$ нм, содержание атомов ~70 % от величины для графита Аморфные области разреженные с плотностью атомов ~20 % от таковой для графита Числа агрегации $m_{C} \approx 48$ и $m_{A} \approx 12$

Модельная функция корреляции Минимум при *R*/*d*_{*P*} = 1 и максимум при *R*/*d*_{*P*} = (4/3)^{1/2} Межплоскостное расстояние *R*_{min} = *d R* ≥ *R*_{min} рост корреляций между атомами, принадлежащими разным плоскостям

Пиролизаты дифталоцианинов La

Температуры: 800; 900 и 1020 °С (a,b,c).

1600; 1640 и 1800 °C (a,b,c).

Пиролизаты дифталоцианинов La

Пиролизаты дифталоцианинов иттрия

Температурная эволюция атомных корреляций: T = 850-1700 °C

Графит и пиролизат (850°С)

Аморфные фрагменты графита и пиролизатов имеют значительное сходство структур !!!

Температурное поведение параметров наблюдаемых атомных кластеров

Формирование агрегатов DLA-mechanism Диффузия

Закон Аррениуса

 $m(T) = m_{\text{max}} \cdot \exp[-E_A/k_B(T+273.2)]$

Энергия активации $E_A = (3045 \pm 333) K \approx 0.3 эВ$ диффузия атомов по междоузлиям в кристаллах (углерод в α -Fe) $T \rightarrow \infty$, $m_{max} = 153 \pm 33$ в ~ 2.6 раза выше, чем число атомов в C_{60}

Небольшой рост размера агрегатов Сильное увеличение сечения и степени агрегации (~ 3.5 раза) до *m* ~ 35 Плотность аморфных агрегатов ~ 50 % от плотности графита

<u>Выводы</u>

Сопоставление данных малоуглового рассеяния нейтронов и рентгеновских лучей для пиролизатов с металлами (лантаноиды, актиноиды) показывает, что в качественном отношении структуры взаимно подобны

Методом SANS обнаружены структурные уровни пористой структуры с корреляционными масштабами от долей до единиц, десятков и сотен нанометров, а с помощью AFM - до десятков микрон

Данные рассеяния рентгеновских лучей, отвечающие масштабам от размера атома до размеров молекул ДФЦ и межмолекулярных расстояний, показывают формирование ячеек молекулярного размера (~ 1 нм), объединение которых создает иерархию наноразмерных структур с атомами металла

Как показали результаты химических и термических испытаний, ультрапористые матрицы пиролизатов способны служить для инкапсулирования и хранения нуклидов

Спасибо за внимание !

