Применение МУРН для исследования морфологии и внутренней структуры органогелей

Yulia Gorshkova

FLNP JINR, Dubna, Russia

MAGDALENA ORDON,

MIROSŁAWA OSSOWSKA-CHRUŚCIEL

Siedlce University of Natural Sciences and Humanities, Institute of Chemistry, Siedlce, Poland

SMALL ANGLE NEUTRON SCATTERING

CHALENGE OF INVESTIGATION

70PhOLCA: SCHEME OF SYNTHESIS

easy form a hydrogen bonds with the proton acceptor molecules

GEL FORMATION

	1	2
Chloroform	S	S
Mesitylene	S	Р
1,2-	TG (CGC 2 mM)	TG (W)
Dichlorobenzene		
Chlorobenzene	TG (CGC 2 mM)	GP
Benzene	Ι	Р
Toluene	Ι	GP
Isopropanol	S	S
DMSO/water	Р	TG (CGC 5 mM)
DMF/water	S	TG
MeOH/water	Р	S
Acetone/water	S	GP
AcOH/water	S	GP
Dioxane/water	S	TLG
CH ₃ CN/water	S	OG

for two compounds: 1 – ionic; 2 – non ionic

TG - *transparent gel*; TLG - translucent gel; GP - gelatinous precipitate;

S - solution; I - insoluble; P - precipitate; OG - opaque gel; W - weak

do not form gel with bile acids the solvents with high molecular weight or

without proton donor-acceptor groups

form gel in mixtures of DMSO (dimethyl sulfoxide)/water (1:2 to 3:2),

DMF (dimetyloformamid)/water (2:3 to 3:2), 1,4-dioxane/water (1:4)

[Maitra, J. Org. Chem. 2011].

DMSO – organic solvent have proton acceptor group. Gel systems are formed by hydrogen bonds.

SULFOXIDES: PROPERTIES AND APLICATIONS

SCIENTIFIC INTEREST

Morphology

Internal structure

Phase transitions

Solutions of gel 7OPhOLCA in DMSO-d₆ in concentrations: 1 – 0.005g/ml; 2 – 0.010g/ml; 3 – 0.015g/ml; 4 – 0.020g/ml; 5 – 0.025g/mlat room temperature

DSC METHOD

Thermograms of full cycle heating and cooling for 7OPhOLCA in DMSO-d₆ (0.015g/ml), in the range of -20°C to 60°C with rate of 5deg/min for sample with mass 14.02mg

SANS METHOD: Effect of concentration

Guinier region

Morphology

Internal structure

The scattering intensity is determined by a power law: $I(q) \sim q^{-m}$, where m is a powerlaw exponent related to a fractal dimension as D = 6 - m. The gradient gives information about the morphology of the sample.

The scattering on the individual lamellas with $d = 43.4 \pm 0.1 \text{\AA}$

SANS curves for 7OPhOLCA in DMSO-d₆ at concentrations C = 0.005, 0.010, 0.015, 0.020 and 0.025g/ml at T = 10° C

SANS METHOD: Temperature effect

 $\begin{array}{l} m=-4.0\pm 0.2-\\ objects \quad with \quad a\\ smooth \ surface, \end{array}$

 $m = -3.6 \pm 0.1 -$ surface fractal,

 $\begin{array}{ll} m=-2.0\pm0.1-\\ a & system & consist\\ from & the & fully\\ separated lamellas \end{array}$

SANS curves for 7OPhOLCA in DMSO-d₆ with C = 0.015g/ml at T = 10, 25 and $45^{\circ}C$

Increasing of the temperature led to the **morphology transitions** Gel 1 \rightarrow Gel 2 and Gel 2 \rightarrow Gel 3.

DSC METHOD: Morphology transition in Gel phase

SANS METHOD: Sol – Gel transition

Proposed Sol – Gel transition scheme for the 7OPhOLCA in DMSO-d₆ determined by SANS. The values 4, 3.0 - 3.9, 2 and 1 correspond to the objects with a smooth surface, surface fractal, lamellas in solution and disordered state, respectively

Gel – Sol transition is reversible with hysteresis on the temperature

PHASE TRANSITION OF PC MEMBRANES IN THE SULFOXIDES PRESENTS

CMRNS Dubna, 2015, July 4 -7, Constanta, Romania

SANS METHOD: Time effect

Optical microscopy image for 7OPhOLCA in DMSO-d₆ at concentration $C = 0.025 \text{ g/ml} (\mathbf{A})$ after preparation, (**B**) after 4 days with max magnification 6.3x of the crystallization center and (**C**) after 14 days

SANS curves for 7OPhOLCA in DMSO-d₆ with C = 0.015, 0.020 and 0.025g/ml at T=20°C after preparation (*left*) and after 14 days (*right*)

INFRARED SPECTROSCOPY (FT - IR)

Figure of full-width at half-maximum (FWHM) in function of temperature of hydroxyl group, during heating. A – stretching vibrations (vOH); B – deformation vibrations (δ OH) in the range of temperature from 30°C to 60°C for sample "3".

SUMMARY

	HEATING CYCLE					
	0.015g/ml 0.025g/ml			/ml		
Type of transition		DSC	SANS	FTIR	DSC	SANS
		5deg/min			2deg/min	
		14.02mg			26.21mg	
	Tp	4.72	Х	Х	4.37	Х
Cr - Gel	$\Delta \mathbf{H}$	61.21			52.99	
	ΔS	0.22028			0.19094	
	Tp	32.92	Х	Х	X	25
Gel - Fractal form of gel	$\Delta \mathbf{H}$	0.20			Х	
	ΔS	0.00065			X	
Fractal form of gel - Lamellar	Tp	42.25	45	42	Х	28
form of gel	ΔH	0.03			Х	
	ΔS	0.00010			X	
	Tp	X	52	50	33.60	35
Lamellar form of gel - Sol	$\Delta \mathbf{H}$	X			1.29	
	ΔS	Х			0.00421	
			COOLIN	VG CYCL	E	
		0.0	COOLIN)15g/ml	VG CYCL	<i>.E</i> 0.025 g	/ml
Type of transition		0.0 DSC	COOLIN 015g/ml SANS	NG CYCL	<i>E</i> 0.025g DSC	/ml SANS
Type of transition		0.0 DSC 5deg/min	COOLIN 015g/ml SANS	VG CYCL	<i>E</i> 0.025g DSC 2deg/min	/ml SANS
Type of transition		0.0 DSC 5deg/min 14.02mg	COOLIN 015g/ml SANS	NG CYCL	<i>E</i> 0.025g DSC 2deg/min 26.21mg	/ml SANS
Type of transition	Tp	0.0 DSC 5deg/min 14.02mg 18.58	COOLIN 015g/ml SANS 18	FTIR	E 0.025g DSC 2deg/min 26.21mg X	/ml SANS 29
Type of transition Sol - Lamellar form of gel	<u> </u>	0.0 DSC 5deg/min 14.02mg 18.58 0.21	COOLIN D15g/ml SANS	FTIR X	E 0.025g DSC 2deg/min 26.21mg X X X	/ml SANS 29
Type of transition Sol - Lamellar form of gel		0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072	COOLIN 015g/ml SANS 18	FTIR X	E 0.025g DSC 2deg/min 26.21mg X X X X	/ml SANS 29
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal		0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99	COOLIN 015g/ml SANS 18 15	FTIR X	E 0.025g DSC 2deg/min 26.21mg X X X X X X	/ml SANS 29 21
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel		0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08	COOLIN 015g/ml SANS 18 15	FTIR X	E 0.025g DSC 2deg/min 26.21mg X X X X X X X	/ml SANS 29 21
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel	$ \begin{array}{c} T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \end{array} $	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028	COOLIN 015g/ml SANS 18 15	FTIR X X	E 0.025g DSC 2deg/min 26.21mg X X X X X X X X X X X	/ml SANS 29 21
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel	$ \begin{bmatrix} T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta F \\ \Delta S \\ T_p $	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028 11.46	COOLIN 015g/ml SANS 18 15 11	FTIR X X X	E 0.025g DSC 2deg/min 26.21mg X X X X X X X X 15.29	/ml SANS 29 21 18
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel Fractal form of gel - Gel	$ \begin{bmatrix} T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H $	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028 11.46 0.09	COOLIN 015g/ml SANS 18 15 11	FTIR X X X X	<i>E</i> 0.025g 0SC 2deg/min 26.21mg X X X X X X X 15.29 1.18	/ml SANS 29 21 18
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel Fractal form of gel - Gel	$ \begin{bmatrix} T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S $	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028 11.46 0.09 0.000316	COOLIN 015g/ml SANS 18 15 11	FTIR X X X X	<i>E</i> 0.025g 0SC 2deg/min 26.21mg X X X X X X X 15.29 1.18 0.00409	/ml SANS 29 21 18
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel Fractal form of gel - Gel	$ \begin{array}{c} T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ \Delta H \\ \Delta S \\ T_p \\ Z \\ $	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028 11.46 0.09 0.000316 -6.41	COOLIN 015g/ml SANS 18 15 11 X	FTIR X X X X	E 0.025g DSC 2deg/min 26.21mg X X X X X X X X 15.29 1.18 0.00409 -4.95	/ml SANS 29 21 18 X
Type of transition Sol - Lamellar form of gel Lamellar form of gel – Fractal form of gel Fractal form of gel - Gel Gel – Cr	$\begin{array}{c} \mathbf{T_p} \\ \Delta \mathbf{H} \\ \Delta \mathbf{S} \\ \mathbf{T_p} \\ \Delta \mathbf{H} \end{array}$	0.0 DSC 5deg/min 14.02mg 18.58 0.21 0.00072 14.99 0.08 0.00028 11.46 0.09 0.000316 -6.41 81.90	COOLIN 015g/ml SANS 18 15 11 X	FTIR X X X X	E 0.025g DSC 2deg/min 26.21mg X X X X X X X 15.29 1.18 0.00409 -4.95 69.64	/ml SANS 29 21 18 X

USER POLICY IN FLNP JINR

200 ms

200 µS

Stationary reflector

Water moderator

Core

Moveable

reflector

Period for proposal submission September 1 - October 15 March 1 - April 15

http://ibr-2.jinr.ru

Conferences on Condensed Matter Research at IBR-2 reactor

E-mail: cmr@nf.jinr.ru Web Site: http://cmr-ibr.jinr.ru Fax: (+7-496-21) 65484

Yu. Gorshkova FLNP JINR

WHAT WE CAN LEARN USING SANS: OBJECTS AND PARAMETERS

CMRNS Dubna, 2015, July 4-7, Constanta, Romania

Main parameters of YuMO instrument

Parameters	Value	
Flux on the sample (thermal neutrons)	10 ⁷ – 4x10 ⁷ n/(s cm ²) [1]	
Used wavelength	0.5 Å to 8 Å #	
Q-range	7x10 ⁻³ - 0.5 Å ⁻¹	
Dynamic Q-range	q _{max} /q _{min} up to 100	
Specific features	Two detectors system [2,3], central hole detectors	
Size range of object *	500 – 10 Å	
Intensity (absolute units -minimal levels)	0.01 cm ⁻¹	
Calibration standard	Vanadium during the experiment [4]	
Size of beam on the sample	8 – 22 mm ² @	
Collimation system	Axial	
Detectors	He ³ -fulfiled, home made preparation, 8 independent wires [5]	
Detector (direct beam)	⁶ Li-convertor (home made preparation)	
Condition of sample	In special box in air	
Q-resolution	low, 5-20%	
Temperature range	-50°C -+130°C ^ (Lauda)	
Temperature range	700 °C ** (Evrotherm)	
Number of computer controlled samples	14 ***	
Background level	0.03 – 0.2 cm ⁻¹	
Mean time of measurements for one sample	1 h +	
Frequency of pulse repetition	5 Hz	
Electronic system	VME	
The instrument control of the second second	CONTR [C]	

WHAT WE CAN LEARN USING SANS: SIZE RANGE

CMRNS Dubna, 2015, July 4-7, Constanta, Romania