Малоугловое рассеяние нейтронов в исследованиях наноуглерода и его жидких дисперсий

<u>Т.В. Тропин</u>, М.В. Авдеев, О.А. Кизима, Р.А. Еремин, Н. Жаргалан, М.В. Коробов, В.Л. Аксенов

III Совещание по малоугловому рассеянию нейтронов «МУРомец-2015», 24-25 сентября, Гатчина, Россия

Сотрудничество

М.В. Авдеев¹, В.Л. Аксенов^{1,2}, О.А. Кизима³, М.В. Коробов⁴, Н. Жаргалан^{1,5}, Р.А. Еремин¹, В.М. Гарамус⁶, Л. Рошта⁷

⁷Research Institute for Solid State Physics and Optics, Budapest, Hungary

План доклада

- •Введение: растворы фуллеренов
- МУРН исследование и моделирование раствора C₇₀/CS₂
- •Агрегация С₆₀ в полярных растворах
- •Коллоидные водные дисперсии С₆₀ для биомедицинских применений
- •Заключение

Растворы фуллеренов

Эпоха новых углеродных материалов

Фуллерены (1985)

Графен (2004)

Углеродные нанотрубки (1991)

Растворимость фуллерена С₆₀

Solvent	Solubility of C ₆₀		Solvent	Solubility of C ₆₀	
	10 ⁴ × mole	10 ³ × molarity		$10^4 \times mole$	$10^3 \times molarity$
	fraction			fraction	
Aromatic Hydrocarbons			Alcohols		
Benzene	2.11	2.36	methanol	0.00002	0.000046
Toluene	4.14	3.89	ethanol	0.001	0.0014
1,2-dimethylbenzene	14.7	12.1	1-propanol	0.004	0.0057
Tetralin	30.1	22.2	1-butanol	0.012	0.013
Ethylbenzene	4.42	3.61	1-pentanol	0.045	0.042
n-propylbenzene	2.9	2.08	1-hexanol	0.073	0.058
Isopropylbenzene	2.32	1.67	1-octanol	0.103	0.065
Chlorobenzene	9.88	9.72	Other polar solvents		
Bromobenzene	4.82	4.58	acetone	0.001	0.001
Styrene	5.97	5.21	acetonitrile	0.000	0.000
Benzonitrile	0.58	0.57	water	3.2×10 ⁻¹²	1.8×10 ⁻¹¹
Alkanes			Miscellaneous		
n - pentane	0.008	0.007	carbon disulfide	6.60	11.0
n - hexane	0.078	0.060	Tetrahydrofuran	0.07	0.08
n-octane	0.056	0.035	Pyridine	1.00	1.24
n-decane	0.192	0.099	Pyrrolidine	54	66
		6	N-methyl-2-pyrrolidone	1.19	1.24

Ruoff R S et al J. Phys. Chem. 97 3379 (1993)

Растворы фуллерена С60

Слабополярные растворители (толуол, бензол) (ε< 10) Растворимость до 50 мг/мл

D = 1 нм

Преимущественно молекулярные растворы.

Образование кластеров в пересыщенном состоянии Среднеполярные растворители (пиридин, N-метилпирролидон) (ε > 10) Растворимость до 1 мг/мл

D < 500 нм

Переход молекулярные – коллоидные растворы.

Образование кластеров во времени

Полярные водные растворы фуллерена (ε = 82) Не растворимы

D < 100 нм

Исключительно коллоидные растворы.

Фуллерен диспергируется только в виде кластеров

Авдеев М.В., Аксенов В.Л., Тропин Т.В. Журнал Физической Химии 84 1405 (2010)

С₇₀/CS₂: МУРН и МД моделирование

Раствор C₆₀/CS₂

Раствор в CS₂

- ✓ Низкий фон некогерентного рассеяния
- ✓ Большой контраст фуллеренов
 С₆₀ и С₇₀ с растворителем
- ✓ Высокое значение растворимости фуллерена в CS₂

Ранние работы по C₆₀/CS₂

- ✓ Образование малых кластеров.
- ✓ Радиус R_g частиц в растворе превышает расчетное значение на ~ 10-15%.

Профиль плотности длины рассеяния, около поверхности фуллерена в растворе C₆₀ в CS₂.

T.V. Tropin et. al., Proceedings of the 7th biennal International Workshop "Fullerenes and Atomic Clusters", vol. 14, 481-488, (2006)

A.Yu.Teterev, M.V.Avdeev, et. al., In Proceedings of the International Workshop "Molecular Simulation Studies in Material and Biological Sciences", (2005)

Avdeev M.V. et al J. Chem. Phys. 132 164515 (2010)

Молекулярно-динамическое моделирование

Раствор C₇₀/CS₂

* V.N. Bezmel'nitsyn, A.V. Eletskii, M.V. Okun, Physics-Uspekhi, 41, 1091, (1998)

Раствор С₇₀/СS₂: МД моделирование

Визуализация МД ячейки раствора С₇₀/CS₂

Соответствующий профиль плотности длины нейтронного рассеяния в окрестности молекулы фуллерена

По полученным данным МД для сравнения с экспериментом моделировался усредненный по времени профиль МУРН.

МУРН на C₇₀/CS₂: эксперимент и моделирование

Радиус инерции (эксп.): R_g=4.3±0.2 Å Радиус инерции (МД): R_g=4.2 Å Радиус инерции (теор.): R_g=4.16 Å

Полученные значения радиуса инерции согласуются с расчетными.

С₆₀/NMП: Аггрегация С₆₀ в полярных растворах

Раствор С₆₀/NMП: кинетические эффекты

Образование и рост кластеров

ТЭМ измерение C₆₀ в полярном растворителе

Образование комплексов Сольватохромный эффект

Рост кластеров в полярных растворах C₆₀/NMП

Раствор С₆₀/NMП: экстракция

- При экстракции в гексан переходят только свободные молекулы фуллерена;
- Такая постановка эксперимента позволяет измерить временную эволюцию концентрации мономеров в полярном растворе фуллерена;

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, et al., Chem. Phys. Lett., 493, 103, 2010

Медленный рост кластеров С₆₀ в полярных растворах

Стабильное состояние раствора

 •Интересная система для изучения кинетики
 •Связь с коллоидным состоянием в водных растворах С₆₀
 •Наблюдаются эффекты при добавлении других растворителей...

N-methyl-2-pyrrolidone (NMP) C_5H_9NO

•Конечное состояние системы – стабильный коллоидный раствор

- •Средний размер ~500 нм
- •Время эволюции состояния ~10 дней
- •Остаток после выпаривания трудно перерастворяется

Реорганизация кластерного состояния

UV-Vis, SANS, DLS data, mass spectrometry...

- В результате добавления воды крупные кластеры С₆₀ (~500 нм) распадаются
- Наблюдается сольватохромный эффект
- В конечном состоянии системы размер агрегатов составляет 10-100 нм.

O.A.Kyzyma, L.A.Bulavin, V.L.Aksenov, M.V.Avdeev, T.V.Tropin, M.V.Korobov, S.V.Snegir, L.Rosta Materials structure.15 (2008) 17

Реорганизация кластерного состояния

При добавлении воды усиливается МУРН!

Зависимость интегральной интенсивности рассеяния от доли добавляемой воды.

Эффект имеет критический характер и происходит когда объемная доля добавляемой воды >40%.

Качественно аналогичный эффект также происходит при добавлении толуола (слабополярного растворителя!) в С₆₀/NMП.

V.L. Aksenov, M.V. Avdeev, T.V. Tropin, M.V. Korobov, N.N. Kozhemyakina, N.V. Avramenko, L.Rosta // Physica B V.385–386 PP.795–797 2006

O.A. Kyzyma, T.O. Kyrey, M.V. Avdeev, M.V. Korobov, V.L. Aksenov, L.A. Bulavin // Chem. Phys. Lett., V. 556 PP. 178-181 2013

Медленный рост кластеров в полярных растворах C₆₀

С₆₀/NMП: Моделирование кинетики роста кластеров

Уравнения динамики популяций

Уравнения динамики популяций (PBE) – система интегро-диффернциальных уравнений, описывающая эволюцию популяций (концентраций) определенных объектов во времени. Популяции определяют распределение числа единиц (частиц) по различным свойствам.

- Кристаллизация
- Дисперсии, жидкости, растворы
- Аэрозоли
- Биологические системы
- Кинетика полимеризации
- Модели в экономике
- Химические реакции

Уравнения динамики популяций

 $N_{\rm i}, n(v)$ – функция распределения.

S – вероятность распада; Γ – распределение при распаде.

Ramkrishna D. (2000) Population Balances. Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego.

Моделирование различных процессов в растворах

Подход используется для описания кинетики различных процессов в растворах:

- Возникновение частиц (растворение); •
- Агрегация частиц
- Нуклеация
- Перестройка частиц

• Поверхностные эффекты

Также можно учитывать:

•Различные виды частиц в растворе
 •Распределение частиц по различным свойствам (форма, плотность, состав)

Модель ограниченного роста для растворов C₆₀

Образование и рост кластеров рассматривается как двух-ступенчатый процесс: образование комплексов с молекулами растворителя и последующий рост кластеров.

Значения параметров модели получены из эксперимента. Решения уравнений для реальных систем получаются методом экстраполяции по времени.

T.V. Tropin, M.V. Avdeev, O.A. Kyzyma, R.A. Yeremin, N. Jargalan, M.V. Korobov, V.L. Aksenov // Phys. Status Solidi B, V. 248, Nos. 11, pp. 2728-2731, 2011

Моделирование МУРН по расчетной f(n,t)

Модельные кривые МУРН получаются напрямую из расчитанной функции распределения:

$$I(q) = \int_{0}^{\infty} (\rho(r) - \rho_{sol})^{2} V^{2}(r) P(q, r) f(r, t) dr$$

r – размер кластера;

 $\rho(r)$ – плотность длины рассеяния кластера размером *r*;

ρ_{solv} – средняя плотность длины рассеяния раствора;

V(r) – объем кластера;

Р(q,r) – форм-фактор кластера; f(r,t) – функция распределения по размерам;

$$P(q,r) = \left(3\frac{\sin(qr) - qr\cos(qr)}{(qr)^3}\right)^2 \stackrel{\text{Tr}}{\cong}$$

Эволюция среднего размерам частиц в растворе

T.V. Tropin, N. Jargalan, M.V. Avdeev, O.A. Kyzyma, et al., Physics of the Solid State, vol. 56, 148-151, 2014.

Моделирование МУРН по f(n,t)

t. a.u.

Коллоидные растворы С₆₀ для биомедицинских применений

Немодифицированные растворы фуллеренов

In vivo исследования

Визуальное сравнение роста опухоли карцинома Льюиса у мышей. Контроль -*a*), инъекции *son/nC*₆₀ - *b*), инъекции Dox - *c*) и инъекции *son/nC*₆₀+Dox - *d*) через 20 дней после трансплантации опухоли.

Рост опухолевых клеток карцинома Льюиса печени у мышей, при воздействии *son/nC₆₀*, Dox и *son/nC₆₀*+Dox . Общая доза C₆₀ - 25мг/кг (суточная 5мг/мл), Dox -2,5 мг/мл (суточная 0,5мг/мл).

Обнаружен синергетический эффект *nC₆₀*+ Dox в ингибировании клеток опухоли и увеличении продолжительности жизни. S. Prylutska et al. Drugs R D (2014)14, р.333 С.В. Прилуцкая и др. Биолтехнология (2011)4,№6,с.82

Малоугловое рассеяние нейтронов на системах *son/n*C₆₀, *son/n*C₇₀ и *NMP/n*C₆₀

0,008 NMP/nC₆₀ 0.007 Rq=8(1)nm D~20 нм 0,006 Rg=12(2)nm 0,005 0.004 0.003 0,002 0.00 10 15 20 25 30 35 l(q), cm^{.1} r,nm 0,1 NMP/nC of 1 week NMP/nC 1 month 0,01 0,1 q, nm⁻¹

Кривые нейтронного рассеяния системы son/nC₆₀, son/nC₇₀ Сплошные линии – модельные кривые, полученные с помощью косвенного преобразования Фурье.

Кривые нейтронного рассеяния для систем NMP/nC₆₀ в зависимости от времени между приготовлением и разбавлением водой

Характерные размеры кластеров в водных растворах фуллерена 50нм для son/nC₆₀ 55нм - son/nC₇₀, 20 и 30 нм для системы *NMP/n*C₆₀ через 1 неделю и 1 месяц, соответственно.

> V.L. Aksenov, M.V. Avdeev, O.A. Kyzyma et al. // Cryst. Rep. 52 (2007) 479-482

Обнаружено комплексообразование *п*С₆₀ + Dox, что позволит препарату дольше удерживаться в клетке и удлинить его действие.

Yu.I. Prylutskyy, M.P. Evstigneev, V.V. Cherepanov, O.A. Kyzyma et al.// J. Nanopart. Res. (2015) 17:45.

Обнаружено увеличение размеров агрегатов и электрокинетической константы при добавлении к son/nC₆₀ препарата Cisplatin

Заключение

- Растворы фуллеренов характеризуются интересными кинетическими эффектами: ростом кластеров и комплексообразованием.
- Полярные растворы С₆₀ представляют собой модельную систему для исследования и описания водных коллоидных дисперсий фуллерена.
- Проведена детальная структурная характеризация смесей фуллерена С₆₀ с противоопухолевыми препаратами на основе комплексного анализа (МУРН, МУРР, ДСР, АСМ, ИК,УФ-Вид, МС). Обнаружено формирование комплексов, что объясняет увеличение терапевтического эффекта смеси по сравнению с применением чистых препаратов.

Спасибо за внимание!

