Микромагнитное моделирование поведения локальной намагниченности в инвертированных опалоподобных структурах

<u>И. С. Дубицкий</u>, А. В. Сыромятников, Н. А. Григорьева, А. А. Мистонов, И. С. Шишкин, С. В. Григорьев

Санкт-Петербургский государственный университет, Физический факультет, кафедра Ядерно-физических методов исследования

Петербургский институт ядерной физики

E-mail: i.dubitsky@phys.spbu.ru

Синтез ИОПС

1) Коллоидный кристалл был синтезирован методом вертикального осаждения микросфер (средний диаметр микросфер - 500 nm) [1]

2) Пустоты в коллоидном кристалле заполнялись никелем или кобальтом методом электрокристаллизации [2]

3) Микросферы были растворены в толуоле

ИОПС обладают ГЦК структурой [3]

- [1] Napolskii, et. al., Langmuir, **26**(4), 2346-2351, (2009)
- [2] Sapoletova, et. al., Phys. Chem. Chem. Phys., 12(47), 15414-15422, (2010)
- [3] Chumakova, Phys. Rev. B, 90(14), 144103, (2014).

Элементарная ячейка ИОПС

ГЦК структура

Осаждение никеля или кобальта в пустоты коллоидного кристалла Растворение микросфер

Структура элементарной ячейки ИОПС

В ГЦК структуре представлены два типа пустот: октаэдрические + контакт (ножка) + тетраэдрические

Примитивная ячейка

1. Ножки соединяют участки тетрадрической и откаэдрической формы

2. Каждая тетраэдрическая область (квазитетраэдр) имеет 4 ножки

Степень спекания и вид элементарной ячейки ИОПС

Степень спекания (деформации микросфер коллоидного кристалла): k-1 k = r'/rr' - радиус микросферы, r - половина расстояния между центрами микросфер

Основные приближения

- 1. Приближение непрерывной среды, в каждой точке которой определен вектор $\mathbf{M}(\mathbf{r}) |\mathbf{M}(\mathbf{r})| = M_s(T)$
- 2. Любой параметр длины в модели должен быть много больше постоянной решетки ферромагнетика.
- 3. Не учитываются температурные флуктуации.

$$F = F_{\text{ex}} + F_{\text{an}} + F_{\text{m}} + F_{\text{ext}} = \int_{V} \left\{ A \left[\left(\nabla m_{x} \right)^{2} + \left(\nabla m_{y} \right)^{2} + \left(\nabla m_{z} \right)^{2} \right] + f_{\text{an}} - 1/2 \mu_{0} M_{S} \mathbf{m} \cdot \mathbf{H}_{\text{m}} - \mu_{0} M_{S} \mathbf{m} \cdot \mathbf{H}_{\text{ext}} \right\} dV \qquad \mathbf{m} = \mathbf{M} / \mathbf{M}_{S}$$

$$\text{rot} \left(\mathbf{H}_{m} \right) = 0 \Rightarrow \mathbf{H}_{m} = -\nabla U \qquad \begin{cases} \Delta U_{\text{in}} = \operatorname{div}(\mathbf{M}) \\ \Delta U_{\text{out}} = 0 \\ U_{\text{in}} = U_{\text{out}} \\ \partial U_{\text{in}} / \partial \mathbf{n} - \partial U_{\text{out}} / \partial \mathbf{n} = \mathbf{M} \cdot \mathbf{n} \end{cases} \operatorname{div}(\mathbf{M}) - \operatorname{nnothoctb} \left\{ \begin{array}{l} \operatorname{Max} \mathbf{H}_{\text{ext}} \\ \operatorname{Max} \mathbf{H}_{m} \\ \operatorname{Max} \\ \operatorname{Max} \mathbf{H}_{m} \\ \operatorname{Max} \\ \operatorname{$$

Уравнение Ландау-Лифшица-Гильберта (ЛЛГ) – уравнение движения намагниченности:

$$\frac{\partial \mathbf{M}}{\partial t} = -\gamma \mathbf{M} \times \mathbf{H}_{\text{eff}} + \frac{\alpha}{M_s} \mathbf{M} \times \frac{\partial \mathbf{M}}{\partial t}$$
$$\mathbf{H}_{\text{eff}} = \frac{2}{\mu_0 M_s} \nabla \cdot (A \nabla \mathbf{m}) - \frac{1}{\mu_0 M_s} \frac{\partial f_{\text{an}}}{\partial \mathbf{m}} + \mathbf{H}_{\text{m}} + \mathbf{H}_{\text{ext}}$$

Микромагнитное моделирование ИОПС

- Период ИОПС составляет 700 nm; данные МУРН [4] указывают на периодичность магнитной структуры ИОПС вдали от точки коэрцитивной силы paccматривалась одна элементарная ячейка.
- Образцы представляют собой поликристаллы [5] → магнитокристаллическая анизотропия не учитывалась.
- Форма элементарной ячейки ИОПС определяется микросферами для решения уравнения ЛЛГ был выбран метод конечных элементов, реализованный в пакете Nmag [6]
- Параметры материалов: кобальт $A = 3 \cdot 10^{-11} \text{ J/m}$ $M_s = 1.4 \cdot 10^6 \text{ A/M}$ никель $A = 10^{-11} \text{ J/m}$ $M_s = 4.82 \cdot 10^5 \text{ A/m}$
- Обменная длина: $l_{ex} \coloneqq \sqrt{2A / (\mu_0 M_s^2)}$ кобальт 4.9 nm, никель 8.3 nm
- Максимальный размер конечного элемента: кобальт 5 nm, никель 6 nm

Результаты расчета, состояние остаточной намагниченности

Внешнее магнитное поле было приложено вдоль оси [111] (перпендикулярно поверхности образца, вдоль главной диагонали элементарной ячейки).

Состояние остаточной намагниченности, ИОПС на основе никеля:

Вихрь в октаэдрическом участке (квазикубе) наблюдается во всем диапазоне полей между точками схождения ветвей кривой гистерезиса.

Результаты расчета, намагниченность ножек

Проекция намагниченностей ножек ИОПС вдоль осей ножек.

Магнитные моменты ножек могут рассматриваться как изинговские

Результаты расчета, кривые гистерезиса

1) Магнитное состояние ИОПС, в основном, определяется магнитными моментами ножек. Скачки на кривых гистерезиса связаны с переворотом магнитных моментов.

2) В больших полях реализуется конфигурация 3-in-1-out.

3) Все квазитетраэдры переходят в конфигурацию 2-in-2-out во внешнем поле, составляющем 50 mT и -25 mT для ИОПС на основе кобальта и никеля (при убывании поля), в связи с тем, что обменная длина кобальта меньше, чем никеля. (4.9 и 8.3 nm)

4) Конфигурация 2-in-2-out стабильна. Переворот магнитного момента в одной ножке, сопровождается переворотом момента и в другой ножке соответствующего тетраэдра так, чтобы правило спинового льда по-прежнему выполнялось. 10

Размагничивающее поле образца

Элементарная ячейка имеет кубическую форму, образцы, использовавшиеся в экспериментах, представляют собой тонкие пленки — необходимо учесть размагничивающие поле, связанное с формой образца

Размагничивающее поле однородно намагниченной пленки: $H_z^{\text{dem}} = -M_z \frac{V_{\text{IOLS}}}{V_{\text{CLS}}}$

Случай точечных контактов микросфер коллоидного кристалла :

$$V_{\rm IOLS} / V_{\rm film} = 1 - \pi / (3\sqrt{2}) \approx 0.26$$

Случай спекания сфер: $\frac{V_{\text{IOLS}}}{V_{\text{film}}} = 1 - \frac{\pi}{\sqrt{2}} \left(\frac{k^3}{3} - 3k(k-1)^2 + (k-1)^2 \right)$ k := r' / r

Величина спекания может быть найдена из данных СЭМ: k = 1.02

$$V_{\mathrm{IOLS}} / V_{\mathrm{film}} \approx 0.22$$

Связь внутреннего поля, действующего на элементарную ячейку ИОПС, H_{in} и внешнего поля, приложенного к образцу в ходе эксперимента H_{ext}

$$H_{\rm ext} = H_{\rm in} + 0.22M_z$$

Результаты расчета и экспериментальные данные

Кривые гистерезиса были получены методом СКВИД-магнитометрии

Размагничивающее поле сглаживает кривые гистерезиса

- 1. Продемонстрирован изинговский характер поведения магнитных моментов в ножкаперемычках.
- 2. Установлены границы применимости правила спинового льда в ИОПС при приложении внешнего магнитного поля вдоль оси [111].
- 3. Конфигурация 2-in-2-out оказывается более выгодной для ИОПС на основе кобальта, чем для ИОПС, выполненных из никеля.
- 4. Результаты моделирования и данные СКВИД-магнитометрии находятся в количественном согласии.

Спасибо за внимание!

E-mail: i.dubitsky@phys.spbu.ru

$$F_m = -\int_V 1/2\mu_0 M_S \mathbf{m} \cdot \mathbf{H}_m dV = 1/2\mu_0 \int_{\text{all space}} \mathbf{H}_m^2 dV$$

Энергия минимальна при отсутствии размагничивающего поля. Pole avoidance principle. «Сближение» противоположных зарядов, «нежелательность» объемных зарядов

Уравнения Брауна:

$$\begin{cases} \mu_0 M_s \mathbf{m} \times \mathbf{H}_{eff} = 0 \\ \frac{\partial \mathbf{m}}{\partial \mathbf{n}} \Big|_{\partial V} = 0 \end{cases}$$

$$\mathbf{H}_{\text{eff}} = \frac{2}{\mu_0 M_s} \nabla \cdot (A \nabla \mathbf{m}) - \frac{1}{\mu_0 M_s} \frac{\partial J_{\text{an}}}{\partial \mathbf{m}} + \mathbf{H}_{\text{m}} + \mathbf{H}_{\text{ext}}$$

- Не позволяют изучать динамику
- Не могут предсказать минимум энергии, в который перейдет система