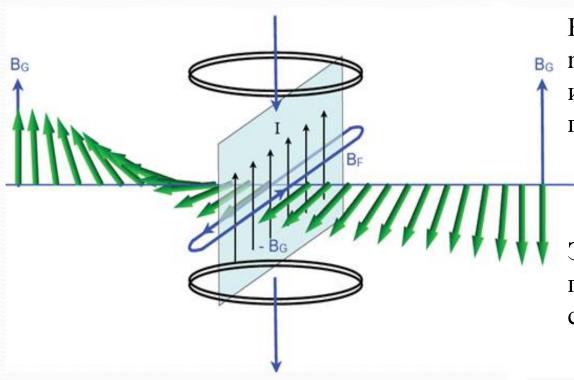
IV Школа по физике поляризованных нейтронов

Гатчина, Орлова Роща, НИЦ КИ ПИЯФ 17-18 декабря 2015 года

Флипперы спина нейтронов

Звягинцев О. А.

Флиппер – устройство для эффективного переворота спина нейтрона по отношению к ведущему магнитному полю **H**.


$$P = (I^+ - I^-)/(I^+ + I^-).$$

1932г. Метод спинового резонанса. Возможен полный переворот поляризации на 180° при определенных значениях ведущего поля H, амплитуды PЧ поля H_1 и времени пролета нейтронов через область действия PЧ поля.

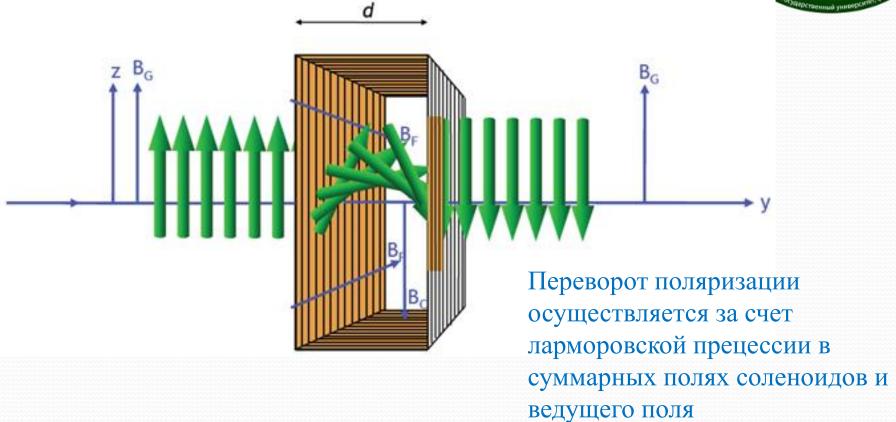
Недостаток: необходимо хорошо стабилизировать ведущее поле Н и частоту ω, а полный поворот поляризации возможен только для монохроматического пучка.

Фольга с током

Неадибатическое прохождение п через область с резким изменением знака ведущего поля, когда

$$\omega_{\phi} >> \omega_{L}$$

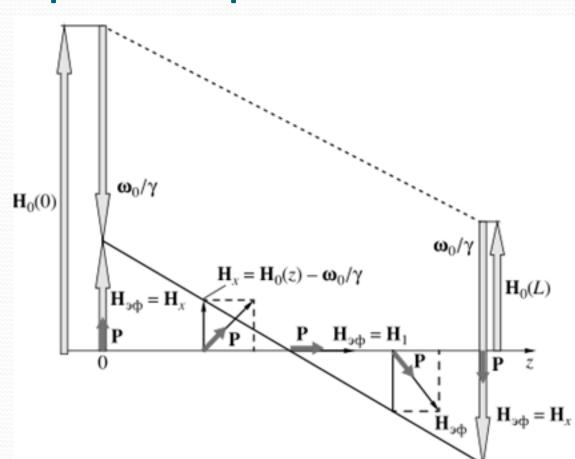
Электрический ток пропускается через фольгу, создавая МП ↑↓ знака.


$$K = \omega_L/\omega_{\varphi}$$

Dabbs, Physical Review 116, 1959

Недостаток: в пучок вносится материал, рассеивающий нейтроны; при большом токе возникают проблемы с теплоотводом.

Флиппер Мезея



Недостаток: остается проблема наличия материала в пучке и монохроматичность пучка.

Адиабатический РЧ флиппер

В системе координат, вращающейся с частотой ω_0 , в скрещенных полях (постоянного H_0 и РЧ H_1 полей) на спин нейтрона действует эффективное поле $H_{9\varphi}$.

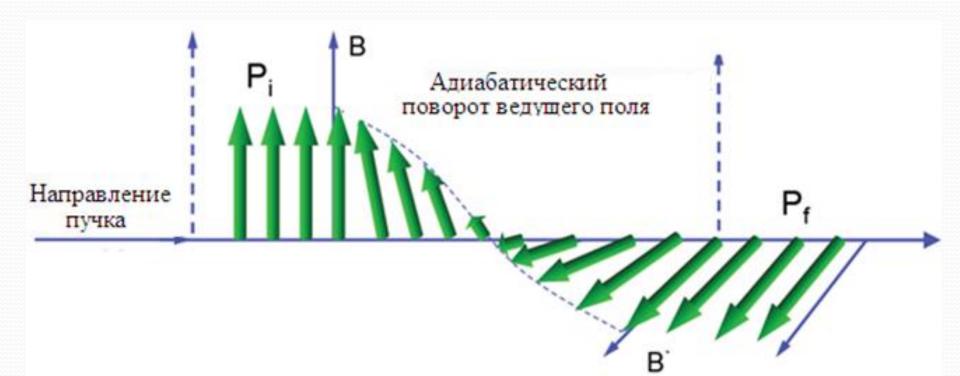
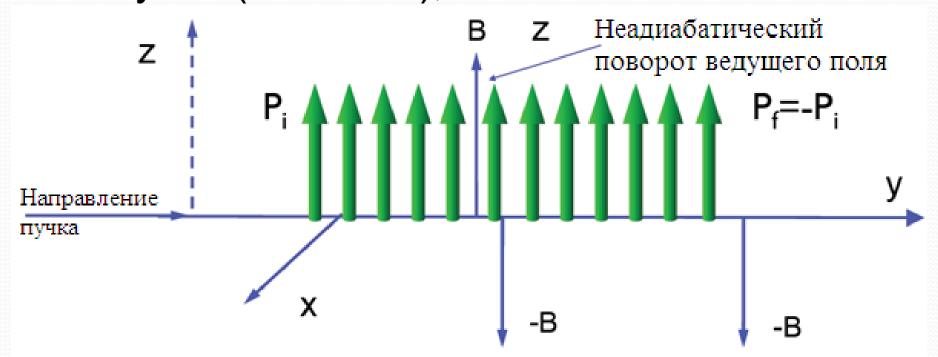

Поляризация оказывается перевернутой.

Схема магнитных полей р.ч.-адиабатического флиппера во вращающейся с частотой ω_0 системе координат

Адиабатические флипперы


$$E \rightarrow \infty$$
 (в реальности E>10)

- 1) Большое ведущее магнитное поле;
- 2) Маленькая скорость нейтронного потока;

Неадиабатические флипперы

- $E \rightarrow 0$ (в реальности E<10)
- -можно использовать «белый» пучок;
- -эффективны и при больших сечениях пучка (~ 10 см2);

Заключение

- В неадиабатическом флиппере, пригодном для широкого диапазона длин волн, необходимо сделать так, чтобы ведущее поле быстро меняло свое направление на расстоянии, малом по сравнению с периодом ларморовской прецессии.
- В обычном резонансном радиочастотном (РЧ) флиппере, где РЧ поле перпендикулярно ведущему постоянному полю, необходимо очень точное поддержание равенства частот РЧ поля и ларморовской прецессии, а также высокая стабильность других параметров, включая монохроматичность нейтронного пучка.
- В адиабатическом РЧ флиппере спин нейтрона проходит через постоянное градиентное магнитное поле, на которое перпендикулярно наложено РЧ поле и переворачивается на 180 градусов.

Благодарности

- Забенкин Владимир Николаевич, НИЦ КИ ПИЯФ
- Аксельрод Леонид Абрамович, НИЦ КИ ПИЯФ

Спасибо за внимание!

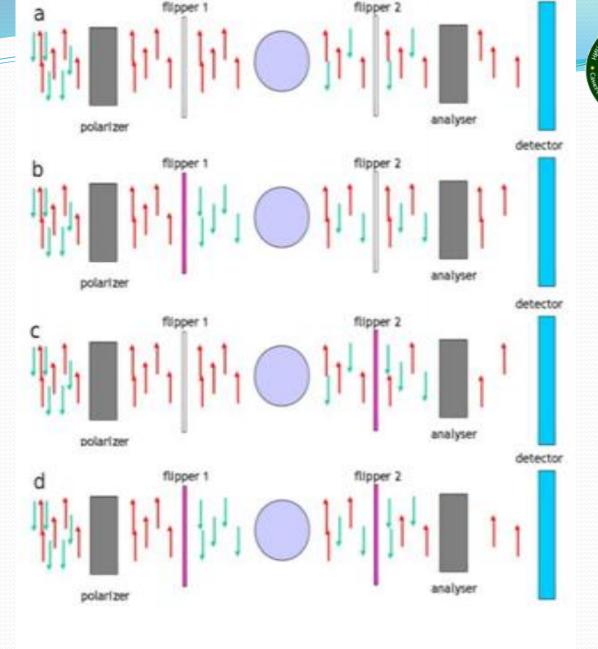
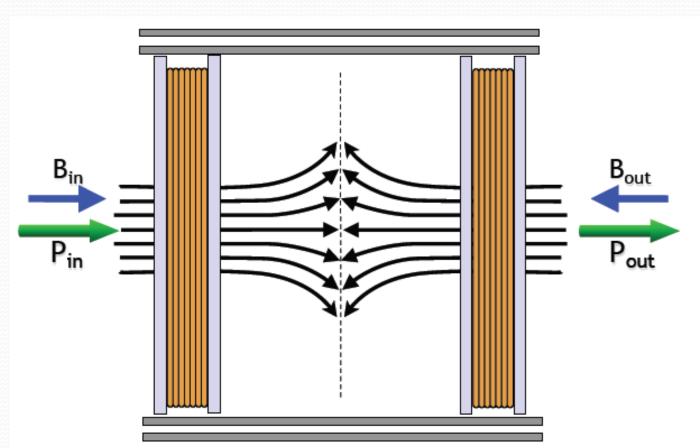



Рисунок С.2 – Четыре этапа эксперимента. Измеряемые сечения рассеяния:

$$(a) - (\frac{d\sigma}{d\Omega})^{\uparrow\uparrow}$$
, $(b) - (\frac{d\sigma}{d\Omega})^{\downarrow\uparrow}$, $(c) - (\frac{d\sigma}{d\Omega})^{\uparrow\downarrow}$, $(d) - (\frac{d\sigma}{d\Omega})^{\downarrow\downarrow}$.

Флиппер Драбкина

Г.М. Драбкин, А.И. Окороков, ЖЭТФ 29, 1969