Школа по физике поляризованных нейтронов

Многослойный нейтронный монохроматор-поляризатор на основе железа

<u>Чжо Зо Лин</u>, В.Г. Сыромятников

СПБГУ, ПИЯФ

17-18.12.2015, Гатчина

Зеркальный нейтронный монохроматор-поляризатор

Схема распределения нейтроно-оптического потенциала многослойной периодической магнитной структуры

Расчетная кривая коэффициента отражения от многослойной периодической магнитной Fe/Ge наноструктуры

Схема монохроматора-поляризатора на основе железа и параметры материалов

Fe (Co)									
Немагнитный слой									
	~								
	Стекло								

Параметр/Элемент	Nb	Ge	Zr	Та	Мо	Ti	Si	Fe	Со	Ni
$ ho b_c, 10^{-6}$ Å ⁻²	3.918	3.612	3.075	3.83	4.308	-1.925	2.075	8.0325	2.2646	9.41
$\rho p_m, 10^{-6}$ Å ⁻²	-	-	-	-	-	-	-	5.1	4.2746	1.46
$\sigma_{_{abs}},$ барн	1.15	2.2	0.185	20.6	2.48	6.09	0.171	2.56	37.18	4.49

Программа Парратт

Расчетные кривые коэффициента отражения нейтронов

Параметры брэгговского максимума 1-го порядка отраженного пучка от нескольких периодических магнитных наноструктур.

Параметры /наноструктуры	Fe/Nb	Fe/Ge	Fe/Zr	Fe/Ta	Fe/Mo	Co/ <u>Ti</u>	<u>Ni</u> /Ti	Fe/Si
Q_{B1}^+ (Å-1)	0.1274	0.1274	0.1273	0.1274	0.1274	0.1262	0.1264	0.1272
R_{B1}^+	0.997	0.998	0.998	0.996	0.996	0.994	0.999	0.999
R_{B1}^-	0.000	0.000	0.000	0.000	0.000	0.000	0.998	0.000
$Q^{\scriptscriptstyle B1}$ (Å-1)	0.1263	0.1263	0.1263	0.1263	0.1264	0.1253	0.1262	0.1262
R_{B1}^{-}	0.126	0.069	0.004	0.113	0.244	0.001	0.998	0.104
$P_{B1}(Q_{B1}^{+})$	1	1	1	1	1	1	0	1
$\left(\Delta\lambda/\lambda ight)_{B1}^{+},\%$	1.1	1.17	1.25	1.25	1.1	1.0	1.66	1.25

Расчетные кривые коэффициента отражения нейтронного пучка от многолойной периодической Fe/Ge наноструктуры

Схема зеркального монохроматора!поляризатора Fe/Nb

Стекло

Экспериментальная кривая коэффициента отражения нейтронов от многослойной периодической Fe/Nb наноструктуры

Рис. 4. Экспериментальные кривые коэффициента отражения нейтронного пучка от многослойной периодической магнитной наноструктуры *Fe/Nb* в зависимости от переданного импульса для (+) и (-) спиновых компонент пучка.

Схема монохроматора-поляризатора на рефлектометре HP-4M

$\Delta\lambda/\lambda = 6.5\%$

Спасибо за внимание

Поляризация нейтронов

- Что такое зеркальный нейтронный монохроматора-поляризатора.
- Принципы работы зеркального монохроматора-поляризатора
- Зачем нужен новый монохроматор-поляризатор
- Программный пакет Парратт
- Расчетые кривые экоффициента отражения от восми структур
- Экспериментальные результаты
- Выводы