

Кобчикова Полина (ОИЯИ, ЛНФ, научный сотрудник – постдок)

<u>Циклосопорины</u>

Циклоспорины — семейство замкнутых в кольцо пептидов, состоящих из 11 аминокислот; продуцируются почвенными грибками вида *Tolypocladium inflatum*. Самый известный из них, циклоспорин A (CsA) — широко используется в медицине, так как обладает иммуносупрессивными свойствами.

Активность в митохондриальных мембранах

Влияние циклоспоринов на открытие пор МРТ в митохондриях печени крысы. (а) Набухание митохондрий (0,5 мг/мл) в отсутствие и в присутствии 300 мМ циклоспоринов (A-E) индуцировали добавлением 50 мМ Ca²⁺. Контрольный участок был получен без циклоспоринов. (б) – Зависимость относительной скорости Ca²⁺-зависимого набухания митохондрий печени крысы от концентрации циклоспоринов. (в) Зависимость относительной амплитуды Ca²⁺-зависимого набухания митохондрий печени крысы от концентрации циклоспоринов. Значение 100% соответствует отсутствию пептида.

Результаты этого исследования согласуются с представлением о корреляции между гибкостью пептидной цепи и ее биодоступностью.

Efimov, S. V., Dubinin, M. V., Kobchikova, P. P., Zgadzay, Y. O., Khodov, I. A., Belosludtsev, K. N., & Klochkov, V. V. (2020). Comparison of cyclosporin variants B-E based on their structural properties and activity in mitochondrial membranes. Biochemical and Biophysical Research Communications, 526(4), 1054-1060. doi:10.1016/j.bbrc.2020.03.184

Structure–Activity Relationship (SAR) Study of Spautin-1 to Entail the Discovery of Novel NEK4 Inhibitors, <u>https://doi.org/10.3390/ijms22020635</u>, 2021

Метод исследования: ЯМР-спектроскопия высокого разрешения

ЯМР спектрометр AVANCE III HD 700 "Bruker"

Константы спин-спинового взаимодействия (КССВ)

 $^{3}J = 6.51\cos^{2}(\phi \pm 60^{\circ}) - 1.76\cos(\phi \pm 60^{\circ}) + 1.6$

ЯМР-спектр CsA в CDCl₃ при 36°С (500 МГц)

Метод исследования: моделирование молекулярной

<u>динамики</u>

GROMACS *fast, flexible & free*

Симуляции основаны на законе

Ньютона:

Траектория моделирования

Позиция всех N атомов молекулы в каждый момент времени «доступная» информация

- углы
- расстояния

• Инструменты Gromacs

обработка

графики

таблицы

Р инструменты Python (пакеты MD Analysis, scikit-learn)

 $(\overline{r_1}(t), \dots, \overline{r_N}(t))$

<u>PCA</u>

DPCA

Dihedral angle principal component analysis of molecular dynamics simulations, 2007, doi.org/10.1063/1.2746330 Proteins 58, 45 2005

Кластеризация траекторий двугранных углов, полученных из моделирования молекулярной динамики

- Нужно заранее знать число кластеров k
- Алгоритм очень чувствителен к выбору начальных центров кластеров

Исследование циклоспоринов в CDCl₃

Часть ЯМР спектров циклоспоринов CsA (500 МГц) и CsD (700 МГц) в CDCl₃, показывающая сигналы N-метильных групп и некоторые сигналы треонина (Bmt) и саркозина (Sar) Спектры 1D-ЯМР CsG, CsE и CsD в CDCl₃ (25°C, 700 МГц). Гидроксильный протон Bmt1(Hγ1) появляется в спектрах некоторых циклоспоринов при разных химических сдвигах

	CsA	CsB	CsC	CsD	CsE	CsG	CsH	CsL
Bmt1	-	-	-	-	-	-	-	7.5
Xxx2	8.00	9.6	9.6	9.9	9.8	9.74	5.8	9.9, 10.0
Val5	7.5	9.1	8.9	8.1	8.4	8.32	7.2	8.6, 8.7
Ala7	7.2	7.4	7.0	7.5	9.1	7.44	5.2	7.3, 6.9
Dal8	7.5	7.8	7.2	8.0	6.2	7.88	8.1	8.4, -
Val11	-	-	-	-	9.7	-	-	_

КССВ (${}^{3}J_{HN-H\alpha}$) циклоспоринов

отвечает другому двугранному углу ψ

Положение сигналов в спектрах ЯМР ¹Н и ¹³С четырех пептидов (B, C, D, E) и CsA в CDCl₃ оказалось сходным

		CsB		CsC			
res	Cα	Hα	C'	Cα Ηα		C'	
1	58.81	5.434	169.78	59.14 5.326		170.78	
2	42.82	5.247	173.95	51.36	4.935	173.49	
3	50.32	4.721,	171.12	50.01	4.736,	170.66	
		3.201			3.214		
4	55.52	5.333	169.99	55.33	5.334	169.85	
5	55.32	4.684	173.62	54.75	4.78	173.23	
6	55.43	4.981	171.60	54.89	5.053	171.31	
7	48.72	4.518	171.17	48.82	4.442	171.28	
8	45.18	4.821	173.45	45.13	4.825	173.58	
9	48.32	5.691	170.35	48.22	5.685	170.67	
10	57.60	5.079	170.15	57.50	5.102	170.29	
11	57.96	5.135	173.37	58.11	5.155	173.90	
		CsD		CsE			
IF S	Cα	Hα	C'	Cα	Hα	C'	
1	59.00	5.555	170.72	58.93	5.834	170.82	
2	53.97	4.748	173.90	49.24	5.027	174.43	
3	50.52	4.722,	171.20	50.53	4.783	171.68	
		3.183			3.223		
4	55.57	5.322	170.02	55.66	5.370	169.88	
5	55.63	4.614	173.81	55.44	4.798	173.74	
6	55.34	4.972	171.53	57.06	4.770	171.31	
7	48.58	4.532	171.05	48.80	4.644	171.39	
8	45.12	4.835	173.39	46.89	4.769	174.40	
9	48.25	5.698	170.31	49.40	5.710	169.89	
10	57.64	5.060	170.08	57.77	5.109	168.49	
11	57.86	5.121	173.65	52.48	4.937	173.40	

Низкопольная область 2D ROESY спектров CsG и CsE (25°C, 700 МГц, время смешивания 350 мс). Val*5 на левой панели принадлежит минорному конформеру, соответствующий обменный кросс-пик положительный.

Межпротонные расстояния между парами атомов, встречающихся в разных вариантах циклоспоринов наиболее часто

CsE	r, Å	CsG	r, Å	CsD	<i>r</i> , Å
Bmt1Ha-Abu2NH	2.27	Bmt1Ha-Nva2HN	2.15	Bmt1Ha-Val2HN	2.18
Bmt1Hb-Abu2NH	2.64	Bmt1Hb-Nva2HN	2.70	Bmt1Hb-Val2HN	2.53
Sar3Ha1-Mle4H	2.42	Sar3Ha1-Mle4H	2.33	Sar3Ha2-Mle4NCH3	2.76
Bmt1Hd2-Mle6Ha	2.12	Bmt1Hd2-Mle6Ha	2.65	Bmt1Hd2-Mle6Ha	2.73
Abu2NH-Val5NH	2.74	Nva2HN-Val5HN	2.66	Val2NH-Val5NH	3.87
Mle6Ha-Ala7NH	1.83	Mle6Ha-Ala7HN	2.08	Mle6Ha-Ala7HN	2.26
Mle6Hg-Dal8NH	3.43	Mle6Hg-Dal8HN	2.70	Mle6Hg-Dal8HN	2.81
Ala7NH-Dal8NH	2.57	Ala7HN-Dal8HN	2.71	Ala7NH-Dala8NH	2.78
Mle9Ha-Mle10Ha	1.84	Mle9Ha-Mle10Ha	1.91	Mle9Ha-Mle10Ha	1.98
Val5Hb-Mle6H	3.22	Val5Hb-Mle6H	3.17		
Bmt1Ha-Ala7NH	2.52	Bmt1Ha-Ala7HN	2.68		
Mle4Ha-Val5NH	2.78	Mle4Ha-Val5HN	2.79		
Mle4H-Val5NH	3.28	Mle4H-Val5HN	3.06		
Abu2Ha-Sar3H	2.61	Nva2Ha-Sar3H	2.58		
		Val5Ha-Mle6H	2.34	Val5Ha-Mle6H	2.5
		Dal8Ha-Mle9H	2.70	Dal8Ha-Mle9H	2.58
		Ala7Ha-Dal8HN	2.58	Ala7Ha-Dal8HN	2.71
		Bmt1Hd2-Mle4Ha	3.02	Bmt1Hd2-Mle4Ha	2.76

Расстояния оценивались по интенсивности кросс-пиков, принимая за эталон расстояние в метиленовой группе в саркозиновом остатке (1.7-1.8 °A)

Структуры циклоспоринов. Выбранные модели, полученные XPLOR-NIH, показаны серым цветом; от GROMACS, в красном цвете. Изображения были подготовлены в UCSF Chimera.

Эволюция некоторых двугранных углов основной цепи (сверху вниз: CsB, CsD, CsE). Данные получены из моделирования молекулярной динамики в хлороформе, T = 298К.

Кластеризация траекторий двугранных углов CsG

Кластеризация **CsG**. Результат снижения размерности, видно два кластера. Две первые компоненты РСА объясняют 53,8% дисперсии системы. Большая часть информации содержится именно в первой компоненте (53%). Двугранные углы **ψ7** и **ф8** дают наибольший вклад в первую компоненту.

Область 7-8 аминокислоты

> Красные структуры - нулевой кластер (76%), желтые структуры - первый кластер (24%). Область 6-8 аминокислот показывает наибольшую расходимость, что согласуется с выводами, полученными с помощью РСА

Оой кластер - 86%, 1ый - 10%, 2ой - 2%

Кластеризация CsC в хлороформе по траектории двугранных углов, полученных в результате МД симуляции

Наибольший вклад в первую компоненту давали углы ф1 и ψ1. Во вторую компоненту наибольший вклад давали углы ф6 и ψ6.

CsC в CDCl3. Зеленые структуры - нулевой кластер (86%), желтые структуры - первый кластер (10%). Область 1-2 аминокислот показывает наибольшую расходимость

Исследование циклоспоринов в комплексе с

мицеллами додецилфосфохолина (ДФХ)

Спектры ЯМР ¹H CsC (сверху) и CsE (снизу) в хлороформе в сравнении со спектрами в мицеллярном растворе.

ЯМР-спектр NOESY CsE, T = 293 K, область NH и Hα сигналов

и центром мицеллы. Циклоспорины С, Е, Н, L.

структуры. Циклоспорины С, Е, Н, L.

Структуры CsE, CsC (черный цвет). Можно видеть, что цепь остатка Bmt (зеленого цвета) ориентирована в центр.

Появление водородных связей во время моделирования. В левой колонке указаны взаимодействующие атомы (О — карбоксильный кислород, Н — амидный протон, Нү и Оү — атомы в ү-позициях). В таблице показано, какие Н-связи являются стабильными: относительная продолжительность их существования (%) во время моделирования и продолжительность самого длительного обнаруженного периода существования (нс, в скобках).

	\mathbf{CsC}	\mathbf{CsL}	\mathbf{CsH}	\mathbf{CsE}
Bmt1(H)-Mle10(O)	_	100%	_	_
Bmt1(Og1)-Ala7(H)	81% (14.2)			
Bmt1(Hg1)-Bmt1(O)	97% (18.7)	91% (38)	44% (12.5)	19% (19.9)
Val5(H)-Sar3(O)	96%~(21.4)		47% (13.4)	100%
Bmt1(Hg1)-Val5(O)	13% (1.2)	43% (8)		
Thr2(Hg1)-Thr2(O)	58% (2.4)	_	_	_
Thr2(H)-Mle6(O)				88.8% (19)
Ala7(H)-Bmt1(Og1)		50% (18)		
Dal8(O)-Val11(H)				51% (5.8)
Dal8(H)-Val11(O)		76%		58% (9.6)

Кластеризация CsE в результате МД симуляции в двух разных средах. Слева - CsE в растворе хлороформа (два конформера, но нулевой кластер содержит в себе 90% всех структур). Справа - CsE в комплексе с мицеллами.

Высокотемпературная молекулярная динамика

Стимулируются переходы через высокоэнергетические барьеры за счет установления высокой температуры в системе.

Три пептидные связи остаются в транс-конформации во всех четырех пептидах на всей моделируемой траектории; это ω1 (Bmt1–Xxx2), ω4 (Mle4–Val5) и ω6 (Mle6–Ala7).

Динамика количества цис-транспереходов пептидных СВЯЗЯХ в циклоспоринов В-Е по сравнению с основным состоянием (в кристаллических И неполярных растворителях), возникающих при высокотемпературном МДмоделировании при 800 К в воде. Различные треки немного сдвинуты по вертикали для наглядности

Пептидная связь Mle9–Mle10 имеет цисконформацию при комнатной температуре; однако в смоделированных высокотемпературных системах это первый угол, который меняется на 180°.

- Пространственные структуры циклоспоринов в комплексе с ДФХ и в растворе хлороформа отличаются ориентацией боковых цепей. Форма основной цепи в обеих средах одинакова: основная цепь образует вытянутое кольцо с остатками 2-5 и 8-11, расположенными на изгибах.
- Жесткость основной цепи CsE наблюдается как в растворе CDCl₃, так и в комплексе с мицеллами фосфолипидов, что может быть одной из причин слабого по сравнению с другими циклоспоринами взаимодействия CsE с митохондриальным поровым комплексом. Однако в системе CsE—ДФХ эта жесткость не столь абсолютна.
- Применение алгоритмов снижения размерности пространства и кластеризации к траекториям двугранных углов циклоспоринов позволило однозначно найти кластеры пространственных структур, значимо отличающихся друг от друга. Так, например, было выявлено, что CsE имеет больше кластеров в комплексе с мицеллами ДФХ в то время, как в хлороформе наблюдается один основной кластер. Кроме того, подход, используемый в работе позволил однозначно найти участки наибольшего расхождения между структурами в разных кластерах. Так, для CsG было установлено, что область 7-8 аминокислот является наиболее подвижной.

A trajectory map analysis of a recombinant type of horseradish peroxidase MD enzyme simulation. (A) A trajectory map of the simulation; the white arrow indicates the band at region 1 42–1 55 whose shifts are plotted on a shift graph on the panel **B**. Region 142–155 (shown in blue) before the conformational change, on panel **C** , and after the conformational change, on panel **D** . On the shift graph is superposed a moving average of 15 frames

Trajectory maps: molecular dynamics visualization and analysis, 2024, 10.1093/nargab/lqad114

Topological 2D-MolGraphs for conformational recognition

Algorithmic graph theory for post-processing molecular dynamics Trajectories, 2022

$$\frac{1}{2} \left(\frac{I_{AB}}{n_B I_{AA}} + \frac{I_{BA}}{n_A I_{BB}} \right) = \sigma(\omega, \tau c, r) \cdot \tau_{mix}$$

$$r_{ij} = r_{cal} \left(\frac{\sigma_{cal}}{\sigma_{ij}}\right)^{\frac{1}{6}}$$

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

(a,c) Эволюция некоторых водородных связей в циклоспоринах. (b) Корреляция между расстоянием О—Н и углом О—Н—N в случае бимодального поведения, когда водородная связь разрывается и появляется снова. (d)Пример автокорреляции для функции существования водородной связи

