

PNPI

NRC

"Kurchatov

Institute"

Phase competition in anisotropic frustrated antiferromagnets

O.I. Utesov^{1, 2, 3}, A.V. Syromyatnikov¹

¹B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Gatchina, Russia ²St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, St. Petersburg, Russia ³Department of Physics, Saint Petersburg State University, St. Petersburg, Russia

\mathbb{N}	lotivation: m	nultiferroics	of spin orig	gin		
	Exchange striction model	Inverse DM model (Spin current model)	Spin-dependent <i>p-d</i> hybridization model			
	$oldsymbol{P}_{ij} \propto oldsymbol{\Pi}_{ij}(oldsymbol{S}_i \cdot oldsymbol{S}_j)$	$oldsymbol{P}_{ij} \propto oldsymbol{e}_{ij} imes (oldsymbol{S}_i imes oldsymbol{S}_j)$	$oldsymbol{P}_{il} \propto (oldsymbol{S}_i \cdot oldsymbol{e}_{il})^2 oldsymbol{e}_{il}$			
	(a) $M_A \qquad M_B \qquad M_A \qquad M_B$ $M_B \qquad M_B$	$\begin{array}{ccc} (d) & \boldsymbol{e_{ij}} \\ & & & \\ & &$	$(g) \qquad \underbrace{e_{ii}}_{M \qquad X} \qquad P = 0$			
	^(b) 🔶 🔶 🔶 P	^(e) \$ ⊖ ⊖ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	P = 0			
	♠ ♦₽	💋 🤗 🏹 🕁 Р				
	(c)	^(f) ↓ j _s ↓ ♥ ₽	(i) 🗸 🖓 P			
		Ø-⊗+Q & P				

Spiral plane flop. Experiment

Spiral plane flop in helimagnets

In anisotropic antiferromagnets there is famous spin flop transition for magnetic field along easy axis. Similarly, in frustrated helimagnets spiral plane flop can be observed

term.

Considered model consists of frustrated exchange with two minima at $\mathbf{q} = \pm \mathbf{k}$, anisotropy (or biaxial dipolar forces) and Zeeman

$$\mathcal{H}_{ex} = -\frac{1}{2} \sum_{i,j} J_{ij} \left(\mathbf{S}_i \cdot \mathbf{S}_j \right),$$

$$\mathcal{H}_{an} = -\sum_i \left[D(S_i^z)^2 + E(S_i^y)^2 \right]$$

$$\mathcal{H}_z = -\sum_i \left(\mathbf{h} \cdot \mathbf{S}_i \right),$$

 $\mathcal{H} = \mathcal{H}_{ex} + \mathcal{H}_{an} + \mathcal{H}_{z}$

If magnetic field is applied in yz plane there is first order transition from helicoid with spins rotating in easy plane (YZ) to conical spiral

Yoshinori Tokura, Shinichiro Seki and Naoto Nagaosa, Rep. Prog. Phys. 77 (2014) 076501

Frustration can lead to noncollinear spin structures Research on corresponding phase transitions is important

	with the plane ac, <u>P=0</u>	T (K	10 - bc - bc	ac-	<u>state</u> ()
	Spiral plane is determined by small <u>anisotropic interactions</u> (we notice difference with DMI spirals)		$0 + \frac{1}{2} + $	spiral 6 8 (T)	Theore field a smallne

(**XY**), where the spiral plane is perpendicular to the field.

retical description is based on accurate accounting for magnetic and anisotropy effects on spin structure by virtue of their ness

Spiral plane flop 2

Anisotropy distorts helicoid and produces higher order odd harmonics, magnetic field provides even harmonics in YZ helicoid, and conical tilt of spins in **XZ** one.

Competition with commensurate structure

It is well-known that anisotropy can destroy helical order in case of competing collinear spin ordering (e.g. antiferromagnetic). So, at small fields one should compare energies of YZ and XY helicoids with collinear (AF) and canted AF (CAF) order

$$\frac{1}{N}\mathcal{E}_{AF} = -\frac{S^2}{2}J_{\mathbf{k}_0} - S^2 D,$$
$$\frac{1}{N}\mathcal{E}_{CAF} \approx -\frac{S^2}{2}J_{\mathbf{k}_0} - S^2 E - \frac{h^2}{2(J_{\mathbf{k}_0} - J_0)}$$

1. The spin-flop field reads $h_{\rm sf} = S\sqrt{2(D-E)(J_{{\bf k}_0}-J_0)}$ 2. AF phase is stable at h = 0 if $D - E > J_k - J_{k_0} \equiv \alpha$

3. Moreover, CAF is preferable in comparison with XY if $E > \alpha$

If this conditions hold, spin-flop transition is split and intermediate YZ helicoid phase appears. One has sequence of phase transitions $\mathbf{AF}\leftrightarrow\mathbf{YZ}\leftrightarrow\mathbf{CAF}$ $E < \alpha$ XY phase has lower energy than CAF and two other sequences become possible: $\mathbf{AF} \leftrightarrow \mathbf{YZ} \leftrightarrow \mathbf{XY}$ $\mathbf{AF}\leftrightarrow\mathbf{XY}$

Small fields: summary

In small fields domain, along with conventional spin-flop transition in antiferromagnets and spiral plane flop in helimagnets, there are three other of phase sequences transitions involving helical structures

Corresponding critical fields and conditions for these scenarios to take place are presented in paper O.I. Utesov and A. V. Syromyatnikov, Phys. Rev. B **100**, 054439 (2019)

Sequence (e) was observed experimentally in J. Lass, et al., Phys. Rev. B 101, 054415 (2020).

fields, however it cannot transform continuously into the saturated phase, and one of scenarios (c) or (d) should take place. Details can be found in O. I. Utesov and A. V. Syromyatnikov, Jour. Mag. Mag. Mater. 527, 167732 (2021).

Our analytical approach successfully describes all five magnetic-field induced phase transtitions at small temperatures (all three for the field along middle axis)

Acknowledgments

The reported study was funded by RFBR according to the research project 18-02-00706.