Magnetic Hedgehog Lattice in a Centrosymmetric Cubic Metal

<u>Shun Okumura</u>¹, Satoru Hayami², Yasuyuki Kato², and Yukitoshi Motome² ¹*The Institute for Solid State Physics, Univ. of Tokyo, ²Dept. of Appl. Phys., Univ. of Tokyo*

✓ In the following calculations, we take J = 1, $\mathbf{h} = \frac{1}{\sqrt{3}}(h, h, h)$, $Q = \frac{\pi}{4}$, and $N = 16^3$.

<u>Method</u>

S. Okumura et al., JPS Conf. Proc. (2020)

We investigate the ground states of the effective spin model by performing Monte Carlo simulations with the standard Metropolis algorithm, gradually decreasing temperature T from 1 to 10⁻⁵ with 10⁴ Monte Carlo sweeps at each T.

The 4*Q*-HL is stabilized due to the synergy between the bilinear and biquadratic interactions even in the absence of the Dzyaloshinskii-Moriya type interaction in a centrosymmetric system.

- $2Q \rightarrow 1Q$ phase transition at $T \sim 0$ \Rightarrow The 2Q-CS is also stabilized by the *d-p* model imitating SrFeO₃. R Yambe and S. Havami, JPSJ (2020)
- \bigcirc 4Q \rightarrow 1Q phase transition expected by increasing T
 - \Rightarrow The entropic effect can enhance the 4Q-HL similar to the biquadratic interaction K. T. Okubo et al., PRB (2011).
- \bigtriangleup No net scalar spin chirality in the magnetic field
 - \Rightarrow The directions of the helical planes play an important role in the topological Hall effect.
 - * The local spin rotation around the field direction is allowed in our model without any anisotropic terms.
 - \rightarrow The types of the constituent waves can be changed by cubic and bond-dependent anisotropy. S. Hayami and Y. Motome, PRB (2021).
- □ We clarified that the 4*Q*-HL is stabilized in the centrosymmetric system by using simulated annealing for the effective spin model including the bilinear and biquadratic interactions without the DMI.
- □ We found the 2*Q*-1*Q* and 4*Q*-1*Q* phase transitions while increasing the magnetic field, which might correspond to the low-*T* and high-*T* experimental results in SrFeO₃, respectively.

<u>Perspective</u>

- \checkmark To include the effects of temperature and anisotropy in order to reproduce the phase diagram in SrFeO₃.
- ✓ To investigate transport properties and dynamics unique to the centrosymmetric HL.

S. Okumura, S. Hayami, Y. Kato, and Y. Motome, in preparation.