Thin film growth of chiral magnet YbNi₃Al₉

Hiroaki Shishido^{1,2,3}, Takuma Ishiguri¹, Tatsuya Saimyoji¹, Akira Okumura¹, Shota Nakamura⁴, Shigeo Ohara⁴, and Yoshihiko Togawa¹

¹Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan ²NanoSquare Research Institute, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan ³The Center for Research & Innovation in Electronic Functional Materials, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan ⁴Department of Physical Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

 $y(\mu m)$

 $x (\mu m)$

Summary and future prospects

 \checkmark We have achieved in growing thin films of the heavy fermion chiral magnet YbNi₃Al₉.

- ✓ Chiral soliton lattice (CSL) state probably arises even in thin films.
- ✓ Carrier density control with the use of electric fields may be available in thin films.

✓ The establishment of a thin film growth method paves way for device applications (e.g. multivalued memory using the topological CSL state)