

Incommensurate Magnetic Phases of the Multiferroic Compound MnCr₂O₄ Described with the Super-space Formalism

Miguel PARDO-SAINZ^{1,2}, Ayaka TOSHIMA³, Gilles ANDRÉ⁴, Juan BASBUS⁵, Gabriel CUELLO⁶, Takashi HONDA⁷, Toshiya OTOMO⁷, Katsuya INOUE³, Yusuke KOUSAKA², Javier CAMPO^{1,*}

¹Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, Spain; ² Osaka Prefecture University, Sakai, Japan; ³Chirality Research Center and Institute for Advanced Materials Research, Hiroshima, Japan; ⁴Laboratoire Léon Brillouin, Saclay, France; ⁵Centro Atómico Bariloche, S. C. de Bariloche, Argentine; ⁶Institut Laue-Langevin, Grenoble, France; ⁷Institute of Materials Structure Science, Tsukuba, Japan

Introduction

- Nowadays, chromium-based normal spinel oxides ACr_2O_4 are one of the most studied materials in the condensed matter community due to the interplay between its magnetic, electric and structural properties [1,2].
- * In particular, for $MnCr_2O_4$, the ground state magnetic structure is still controversial because the magnetic structures reported by different groups and investigated by independent techniques are inconsistent [1-3].

Super-space Group Formalism

Incommensurate structure = basic structure + modulations:

$$\vec{M}_{j}(x_{4}) = \vec{M}_{j,0} + \sum_{n=1}^{\infty} \left[\vec{M}_{j,ns} \sin(2\pi n x_{4}) + \vec{M}_{j,nc} \cos(2\pi n x_{4}) \right]$$

Symmetry operations: space group operations + phase shifts of modulations. Determined by the magnetic super-space group.

Methods

- The magnetic structure of this compound was reinvestigated by magnetization, specific heat and neutron diffraction at different temperatures.
- The results suggested that a new magnetic phase, not previously reported, is developed under 18 K.
- The magnetic phases in this sample were:
- ightarrow Ferrimagnetic order below T_c = 45 K
- > Conical spin order with propagation vector \vec{k}_{S1} = (0.62(1), 0.62(1), 0) below T_{S1} = 20 K
- Conical spin order with propagation vector $\vec{k}_{S2} = (0.660(3), 0.600(1), 0.200(1))$ below $T_{S2} = 18$ K.

2.1

19

FM: (0 0 0)

T(K)

Q (Å-1)

23

39 40 41 42 43

PM

1.1

 $(\delta_1 \ \delta_2 \ \delta_3)$

13

1.5

 $(\delta \delta 0)$

14 15 16 17 18 19 20 21 22 23 24

17

Results

Using the super-space group approach [4], the symmetry of the nuclear and magnetic structures is determined:

Phase	Group	Irr. Rep	$ec{k}$	$\vec{M}_{j,0}$	$\vec{M}_{j,s}$	$\vec{M}_{j,c}$
PM	Fd-3m (#227)	-	-	-	-	-
FiM	lmm'a' (#74.559)	mGM₄⁺	(0 0 0)	$\langle 1\overline{1}0\rangle$	-	-
880	lm'a'2(0,0,g)0ss (#46.1.12.4.m245.1)	$mGM_4^+ \oplus mSM2$	(0.62 0.62 0)	$\langle 1\overline{1}0 \rangle$	(110)	(001)
$\delta_1 \delta_2 \delta_3$	PI(a,b,g)0 (#1.1.1.1.m1.1)	mGM₄⁺ ⊕ mGPI	(0.66 0.6 0.2)	(100)	(010)	(001)

• Electric polarization $\vec{P} \propto \vec{r}_{ij} \times (\vec{S}_i \times \vec{S}_j)$, also can be expressed as: $\vec{P} \propto \vec{k} \times \vec{M}_i$,

Non-zero value of polarization for transverse conical modulations:

- $\succ \delta \delta 0$ phase: $\vec{P} \parallel \langle 001 \rangle$
- $\succ \delta_1 \, \delta_2 \, \delta_3$ phase: $\vec{P} \parallel \langle 01\bar{3} \rangle$

Conclusions

- New magnetic phase, not previously reported, identified under 18 K.
- Using SGF, symmetry of nuclear and magnetic structures is determined.
- Presence of transverse conical magnetic structures in lowertemperature phases implies existence of multiferroicity.
- Through simple theoretical calculations, we derive the macroscopic electric polarization vector for each magnetic phase.

References

- [1] K. Dey et al., Journal of Magnetism and Magnetic Materials 435, 15 (2017).
- [2] K. Tomiyasu et al., Phys. Rev. B 70, 214434 (2004).
- [3] J. M. Hastings and L. M. Corliss, Phys. Rev. 126, 556 (1962).
- [4] J. Rodríguez-Carvajal and J. Villain, Comptes Rendus Physique 20, 770 (2019).