Polarized inelastic neutron scattering: application to unconventional superconductors Sr₂RuO₄ / BaFe_{1.88}Co_{0.12}As₂

илит адерной физи, **Markus Braden**

Universität zu Köln

Спектрина

5th Workshop on Inelastic Neutron Scattering "Spectrina – 2020"

11–12 November 2020 Gatchina, NRC KI PNPI

Collaboration

St. Kunkemöller, Kevin Jenni, Florian Waßer, Navid Qureshi, Dmitry Gorkov

Universität zu Köln

- Paul Steffens, Jiri Kulda, K. Schmalzl
- Yvan Sidis

I Institut Laue Langevin

Laboratoire Léon Brillouin

- I. Mazin

Naval Research Laboratory

- K. Kihou, Chul-Ho Lee
- Z. Mao, and Y. Maeno
- S. Wurmehl, S. Aswartham, L. Harnagea, C. Nacke, B. Büchner

IFW Dresden

Tsulane University New Orleans / Kyoto University

Outline

- Fermi surface sheets and associated magnetic excitations in Sr₂RuO₄
- Quasiferromagnetic excitations in Sr₂RuO₄
- Anisotropy of magnetic order in BaFe₂As₂
- Anisotropy of spin-resonance modes in optimum Co doped BaFe₂As₂
- Conclusions

26 years of superconductivity in Sr₂RuO₄

Knight shift experiments on Sr₂RuO₄

Constraints on the superconducting order parameter in Sr_2RuO_4 from oxygen-17 nuclear magnetic resonance

A. Pustogow^{1,8}*, Yongkang Luo^{1,2,8}*, A. Chronister¹, Y.-S. Su¹, D. A. Sokolov³, F. Jerzembeck³, A. P. Mackenzie^{3,4}, C. W. Hicks³, N. Kikugawa⁵, S. Raghu⁶, E. D. Bauer⁷ & S. E. Brown¹*

Pustogow et al., Nature 574, 72 (2019)

confirmed by: K. Ishida et al., J.Ph.Soc.Jpn 89, 034712 (2020).

Fermi-surface nesting

nesting : α/β -Fermi surface

dynamic susceptibility (RPA)

$$\chi_0(q,\omega) = \left(g\mu_B\right)^2 \sum_{k,i,j} \frac{M_{k;(k+q)}^{i,j} \left[f(\varepsilon_{k,i}) - f(\varepsilon_{(k+q),j})\right]}{\varepsilon_{(k+q),j} - \varepsilon_{q,i} - \hbar\omega + i0^+}$$

$$\chi(q) = \frac{\chi_0(q)}{1 - I(q)\chi_0(q)}$$

Mazin and Singh , PRL (1999)

inelastic neutron scattering

Y. Sidis et al., Phys. Rev. Lett. 83, 3320 (1999).

Braden et al., PRB66, 064522 2002; PRL92, 097402, 2004.

see also:

F. Servant, B. Fak, S. Raymond, J. P. Brison, P. Lejay, and J. Flouquet, Phys. Rev. B 65, 184511 (2002). K. Iida, M. Kofu, N. Katayama, J. Lee, R. Kajimoto, Y. Inamura, M. Nakamura, M. Arai, Y. Yoshida, M. Fujita, K. Yamada, and S.-H. Lee, Phys. Rev. B 84, 060402(R) (2011). . . .

energy and temperature dependency

$$\chi''(q_i, \omega) = \chi'(q_i, 0) \cdot \frac{\Gamma \cdot \omega}{\Gamma^2 + \omega^2}$$

- χ[•](q₀,0) and Γ and FWHM
vary as function of T
- all indicate a close instability !

SDW order appears for 2.5% Ti doping or in $Sr_{2-x}Ca_xRuO_4$ M. Braden et al., PRL 88, 2002. S. Kunkemöller et al., PRB 89, 045119 (2014). J.P. Carlo et al., nature mat. 11, 323 (2012).

• Sr_2RuO_4 is close to QCP

Active bands ? ? ?

2D bands are active Ferromagnetic fluctuations

1D bands are active Nesting is essential

Baskaran, G., Physica B 224, 490 (1996).

Rice, T. M. and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).

J.W. Huo, T. M. Rice, and F.-C. Zhang, Phys. Rev. Lett. 110, 167003 (2013).

triplet superconductivity chiral p-wave mediated through quasi-ferromagnetic fluctuations S. Raghu, A. Kapitulnik, and S. A. Kivelson, Phys. Rev. Lett. 105, 136401 (2010).

S Raghu, Suk Bum Chung and Samuel Lederer, J. PhysConference Series 449 (2013) 012031

superconductivity in Sr₂RuO₄ resembles more closely the quasi-one dimensional organic superconductors

- R. Sharma et al. PNAS (2020) **117** 5222

⇔ S. Kunkemöller et al., PRL 118, 147002 (2017)

Role of ferromagnetic fluctuations?

polarized neutrons (IN20 at ILL)

ferromagnetic fluctuations in Sr₂RuO₄

there is a weak FM component persisting at low T

fitting all data simultaneously

$$\chi''(q,\omega) = \chi_{fm}''(q,\omega) + \chi_{inc}''(q,\omega)$$

$$\chi_{fm,inc}''(q,\omega) = \chi_{fm,inc}'(q,0) \cdot \frac{\Gamma_{fm,inc}(q) \cdot \omega}{\Gamma_{fm,inc}(q)^{2} + \omega^{2}}$$

$$\Gamma_{inc}(q) = \Gamma_{inc} \left(1 + \xi^{2} (q - q_{inc})^{2}\right) \qquad \Gamma_{fm}(q) = \Gamma_{fm}$$

$$\chi_{inc}'(q,0) = \frac{\chi_{inc}'}{1 + \xi^{2} (q - q_{inc})^{2}} \qquad \chi_{fm}'(q,0) = \chi_{fm}' \cdot e^{-\left(\frac{(q - q_{fm,inc})^{2}}{W^{2}} + \ln(2)\right)}$$

total spectrum : two contributions
a) nesting signal
b) centered low-q response
→ 6 parameters

$$\chi_{inc} = 213 \mu_{B}^{2} / eV \quad \Gamma_{inc} = 11.1 meV \quad \xi = 9.7A$$

$$\chi_{fm} = 22 \mu_{B}^{2} / eV \quad \Gamma_{fm} = 15.5 meV \quad W = 0.53 \frac{2\pi}{a}$$

$$\mu_{B}^{2} / eV \approx 3.10^{-5} emu / mol$$

P. Steffens, Y. Sidis, J. Kulda, Z. Q. Mao, Y. Maeno, I. I. Mazin, and M. Braden, Phys. Rev. Lett. **122**, 047004 (2019).

two-component model

agrees with : susceptibility NMR-data specific heat-coefficient

- FM contribution is sharper than expected
- Triplet pairing cannot be explained

P. Steffens, Y. Sidis, J. Kulda, Z. Q. Mao, Y. Maeno, I. I. Mazin, and M. Braden, Phys. Rev. Lett. **122**, 047004 (2019).

phase diagrams of FeAs superconductors

superconductivity appears close to a SDW phase either by doping or by pressure

Magnetic anisotropy in BaFe₂As₂

Static moment parallel a → SFz senses the out-of-plane modes SFy senses the transversal in-plane modes

 Λ_{b} =1.16(2)meV Λ_{c} =0.44(1)meV N. Qureshi et al., **Phys. Rev. B 86, 060410(R) (2012).**

Resonance mode in SC Ba(Fe/Co)₂As₂

A.D. Christianson et al., Nature 456, 930 (2008).
M. D. Lumsden et al., Phys. Rev. Lett. 102, 107005 (2009).
S. Chi et al., Phys. Rev. Lett. 102, 107006 (2009).
A. D. Christianson et al., Phys. Rev. Lett. 103, 087002 (2009).

D. Inosov et al., nat. phys. 6, 178 (2010).

Resonance mode in Ba(Fe_{0.94}Co_{0.06})₂As₂

P. Steffens et al., Phys. Rev. Lett. 110, 137001 (2013)
- resonance mode is split : extra low-E anisotropic mode in long & t-out
- similarity with parent compound: transversal in-plane is hard direction!

Resonance mode in Ba(Fe_{0.94}Co_{0.06})₂As₂

P. Steffens et al., Phys. Rev. Lett. 110, 137001 (2013)
- resonance mode is split : extra low-E anisotropic mode in long & t-out
- similarity with parent compound: transversal in-plane is hard direction!

Chirality in Ba(Fe_{0.94}Co_{0.06})₂As₂

What is the character of the two SRM's? Singlet – triplet exciton ?

horizontal cryomagnet @ ILL compatible with neutron polarization analysis

Conclusions

polarized inelastic neutron scattering can

- quantitatively detect broad quasiferromagnetic fluctuations in Sr_2RuO_4
- show split and anisotropic spin threadtein eAs-based

There is an urgent need for more powerfull instrumentation!