очения станования в С станования в станов

Workshop on Inelastic Neutron Scattering, 19-20 April 2018, Gatchina, PNPI

Three-axis spectrometers at PIK reactor

Current placement

IN1 Thermal neutron three-axis spectrometer IN2 Cold neutron three-axis spectrometer

> IN3 Polarized neutron spectrometer

IN1 – Thermal neutron three-axis spectrometer

Measurements of the scattering function $S(\mathbf{Q}, \omega)$ in single crystals at well defined values of the reciprocal lattice vector \mathbf{Q} and the energy ω .

Applications

- Investigations of lattice dynamics (phonons) and magnetic excitations (magnons and excitations in strongly correlated electron systems) in a wide variety of materials.
- Study of the critical phenomena at phase transitions in materials with different type of ordering.
- Studies of three-dimensional distributions of intensity of inelastic and quasielastic scattering.
- Studies of an doping and external influences (temperature, electric and magnetic fields, pressure) on the nature of phase transitions and dynamics of a lattice.
- The energy analysis of scattering in order to separate scattering from collective excitations and from slow relaxing clusters with short-range ordering.

Thermal neutron spectrometer IN1

HEC 6 thermal channel

Monochromators

PG (002) double focusing Cu (200) double focusing

$$\begin{split} k_i &= 2.66 ~ {\rm \AA}^{-1} - 7.0 ~ {\rm \AA}^{-1} \\ \lambda_i &= 0.9 ~ {\rm \AA} - 2.36 ~ {\rm \AA} \\ E_i &= 15 ~ meV - 100 ~ meV \\ Take-off angles ~ 26^\circ - 90^\circ \end{split}$$

Beam cross section 25×25 cm² Beam size at sample 1×1 cm² ÷ 3×3 cm² Analyzer PG (002) (double focusing) Detector Single ³He detector

Distances	
Thermal source – monochromator	575 cm
Virtual source – monochromator	200 cm
Monochromator - sample	200 cm
Sample – analyser	80 cm
Analyser – detector	60 cn

Channel height – 170 cm

Flux simulation with PG monochromator

PG monochromator: Double focusing WxH = 300 x 300 mm²

VS slit: WxH = 40 x 40 mm²

PG analyzer: Double focused WxH = 200 x 200 mm²

IN1@PNPI (simulation)

- ~ $1.0 \cdot 10^9 \text{ n/cm}^2 \text{s}$ at $1.0 \text{ Å} (6.3 \text{ Å}^{-1})$
- ~ $1.0 \cdot 10^9 \text{ n/cm}^2 \text{s}$ at 1.5 Å (4.2 Å⁻¹)
- ~ 5.5 \cdot 10⁸ n/cm²s at 2.5 Å (2.5 Å⁻¹)

On the sample position

IN8@ILL 6.5 \cdot 10⁸ n/cm²s at 1.5 Å 2.0 \cdot 10⁸ n/cm²s at 2.5 Å

PUMA @MLZ ~ $4.8 \cdot 10^8 \text{ n/cm}^2 \text{s at } 1.5 \text{ Å}$

Polarized analysis option

Heusler polarizer Helmholtz coils on sample Heusler analyzer Two flippers (Mezei type)

IN2 – Cold neutron three-axis spectrometer

Measurements of the scattering function $S(\mathbf{Q}, \omega)$ with low energies and with high resolution.

Applications

- Elastic or inelastic high resolution investigations of low energy magnetic and lattice excitations in single crystals.
- Study of the dispersion of acoustic phonons, soft phonons, spin waves, quasielastic scattering.
- Investigations with high resolution for the transferred momentum and/or energy.
- Fine study of the modulated structures.
- Investigations of the critical phenomena at phase transitions in materials with different type of ordering.
- Solution of the problems of elastic scattering where the good ratio of peak/background is important.
- Studies of dynamics of disordered spin systems like spin glasses etc.

V-wafers m = 5

Cold neutron spectrometer IN2

HEC 3 neutron guide N2

Channel height – 210 cm!

HEC 3 cold neutron guide N2

Monochromators PG (002) (double focusing) Si (111) (double focusing) Analyzers PG (002), Si (111)

 $\begin{array}{l} k_i = 1.0 ~ {\rm \AA}^{\text{-1}} - 4.0 ~ {\rm \AA}^{\text{-1}} \\ \lambda_i = 1.5 ~ {\rm \AA} - 6.0 ~ {\rm \AA} \\ E_i = 2.3 ~ meV - 36 ~ meV \\ Take \text{-off angles } 26^\circ - 140^\circ \end{array}$

Beam size at sample $1 \times 1 \text{ cm}^2 \div 3 \times 3 \text{ cm}^2$ Flux at sample (4.0 Å) $2.15 \cdot 10^8 \text{ n/cm}^2\text{s}$

Detectors Single ³He detector

Distances

Cold source - monochromator 2120 cm Virtual source - monochromator 200 cm Monochromator - sample 200 cm Sample – analyzer 100 cm Analyzer – detector 100 cm

PG monochromator: Double focused WxH = 320 x 220 mm²

Velocity selector:Length30 cmNumber of blades50Screw angle24°PG analyzer:Double focusedWxH = 200 x 200 mm²

Estimated flux with PG monochromator

IN2@PIK (simulation) ~ 2.15 \cdot 10⁸ n/cm²s at 4 Å ~ 1.6 \cdot 10⁸ n/cm²s at 2.3 Å

ThALES ~1.2·10⁸ n/cm²s at 4 Å ~ 2.4·10⁸ n/cm²s at 2.3 Å

IN12 ~ $7 \cdot 10^7$ n/cm²s at 4Å ~ $1 \cdot 10^8$ n/cm²s at 2.3 Å without velocity selector PANDA ~ $1.9 \cdot 10^7$ n/cm²s at 4Å ~ $5.5 \cdot 10^7$ n/cm²s at 2.5 Å with filters

Polarized analysis option

V-cavity Helmholtz coils on monochromator and sample Heusler analyzer Two flippers (Mezei type) V-cavity: Length 120 cm 2 sections 8 channels Side walls m = 3 V-wafers m = 5

IN3 – Polarized neutron three-axis spectrometer

Measurements not only of the scattering function $S(\mathbf{Q}, \omega)$, but also the spin state of scattered neutrons.

Applications

- Separation of phonons and magnons in magnetic crystals.
- Direct study of complex phenomena with entangled physical degrees of freedom of spins, charges, orbitals, lattice vibration by polarization analysis.
- Study of the critical phenomena at phase transitions in materials with different type of ordering.
- Studies of three-dimensional distributions of intensity of inelastic and quasielastic scattering.
- Studies of dynamics of disordered spin systems like spin glasses etc.

Estimated polarized neutrons flux with PG monochromator

PG monochromator: Double focusing WxH = 320 x 220 mm²

Cu₂MnAl (111) analyzer: Double focusing WxH = 200 x 200 mm² IN3@PIK (simulation) ~ $1.1 \cdot 10^8$ n/cm²s at 1 Å (6.3 Å⁻¹) ~ $4.1 \cdot 10^8$ n/cm²s at 1.5 Å (4.2 Å⁻¹) ~ $3.1 \cdot 10^8$ n/cm²s at 2.5 Å (2.5 Å⁻¹) IN20@ILL $0.55 \cdot 10^7 \text{ n/cm}^2 \text{s at } 0.8 \text{ Å}$ $1.05 \cdot 10^7 \text{ n/cm}^2 \text{s at } 1.5 \text{ Å}$ $7 \cdot 10^7 \text{ n/cm}^2 \text{s at } 2.5 \text{ Å}$ with sapphire filter \bigcirc

Polarized analysis units

V-cavity: Length 100 cm 12 channels Side walls m = 3 V-wafers m = 5

Helmholtz coils on monochromator and sample Heusler analyzer Two flippers (Mezei type)

Option – Multiplexing analyzer

Multiplexing analyzer @ANSTO

Multi-analyzer UFO (Universal Focusing Option) @ILL

Multianalyzer system PUMA@MLZ

PNPI TAS group

<u>Igor Zobkalo</u> – project leader Sergey Gavrilov – instrument scientist Yury Kireenko – PhD student, MC simulations

+ in nearest future

Alexandr Ovsyanikov – PhD student, future instrument scientist Anna Matveeva – PhD student, future instrument scientist Maria Yuzvuk – PhD student, future instrument scientist

Spectrina 2018 Спектри Thank you for your attention!