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as much as possible for all neutron trajectories. An inhomogeneity below a
few parts per million (ppm) of the magnetic field integrals is required for an
e�cient operation of a high resolution neutron spin echo spectrometer.

In Ref. [12] Zeyen and Rem tackled the problem of finding analytically
an optimal field shape that minimizes the residual inhomogeneities for field
integral di↵erences due to field variations between axis-parallel paths with
di↵erent radial distance from the solenoid axis.

The axial magnetic field dependence B(z) along the symmetry and beam
axis determines the field pattern in the surrounding beam area since Maxwell’s
equations imply r · ~B = 0 everywhere and r⇥ ~B = 0 outside current zones
(i.e. solenoid windings). Using the natural cylindrical coordinate system for
a solenoid field with z-axis along the solenoid axis, Taylor expansion with
observation of Maxwell’s equations yields the longitudinal B

z

and the radial
B

r

components of the field in the region around the axis [1, 14] , as a function
of only the field along the coil axis (B

z

(z, 0))

B
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The expansion approximates ~B for points (z, r) in the beam with r ⌧ R,
where R is the inner radius of the solenoid.

Let L be the length of the arm, the field integral is defined as

J =

Z
L

| ~B|dl. (3)

We assume that inside the beam area B
r

(z, r) ⌧ B
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(z, r) holds and that
an expansion of the square root of | ~B| in B
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(where B
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+ B
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) is well
enough justified. With equations (1) and (2) in Eq. (3) keeping only the
quadratic terms in r [12], the field integral J becomes
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trajectory with inclination ✓ and a starting point at distance r
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from the
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Ansatz [Zeyen & Rem]: 



axis, r2 can be computed by substituting r = r
0

+ z tan ✓ and by expandingp
1 + tan2 ✓ ' 1+ (1/2) tan2 ✓. In [12] only quadratic terms in r2 and tan2 ✓

are considered. The result is
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Equation (5) shows that the relative inhomogeneity (J � J
0

)/J
0

increases
with the diameter and the divergence of the beam.

The solution B / cos2(z) of Zeyen and Rem [12] is based on the idea
that an optimal function for the magnetic field exists that minimizes the
term H and yields a reduced inhomogeneity �J = J � J

0

. The term H (7)
is minimized under the constraint of a constant field integral (J
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and under the boundary conditions B

z

= 0 and @
z

B
z

(z) = 0 at ±L/2. In
the notation of [12] � is the Lagrange multiplier and f = B

z

(z), then the
minimization of

Z
L/2

�L/2

dz


(@

z

f)2

f
� �f

�
(9)

is equivalent to solving the equation

2 @
z

✓
@
z

f

f

◆
+

✓
@
z

f

f

◆
2

= �, (10)

with � < 0 (the case � > 0 is not physically relevant). Equation (10) is
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The relative inhomogeneity for this solution is

�J
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This value is independent from the diameter of the magnets. For a length L
of 4 m, a divergence of the beam of ±1.4� and an o↵set r

0

of 2 cm, one finds
for the first and the second term 120 ppm and 410 ppm, respectively.

It was briefly discussed in [15] that the quadratic functions

B
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yield �(z) ⌘ 0, which would eliminate the first order of all field inhomogeneity
influences and would only leave the e↵ect of the path length variations within
the divergent beam.

However, each of these solutions can only meet the boundary condition
of B

z

= 0 at z = ±L/2 on one side of the beam path while the other side
exhibits a prohibitive large field value. Combining both solutions and joining
them together inside –i.e. in the middle– of the path would indeed result zero
contribution coming from both (±) terms over nearly the complete path;
however at the joining point a cusp would occur and the function describing
the magnetic field would not be analytic anymore. This singularity or any
smoothed approximation of it at the joining point contributes a finite value
to the integrals, e.g. a cusp-like feature at at z = 0 would add 2B

0

/L to H.
Here we present an extension of the optimization of (4) for divergent

beam paths connecting a small sample area with a large detecting area. It
aims at the minimization of the entire functional
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Minimize! 

Di↵erently from the derivation of Eq. (11), we minimize the combined
influcene from both the terms H and G of Eq. (5). Moreover, we keep
here also the mixed term (z r

0

tan ✓) which also accounts for the asymmetry
between sample and detecting areas (see Appendix).

We need an Ansatz for the magnetic field that fulfills the boundary con-
ditions on both B

z

and its derivative at L = ±L/2 and has no sign changes.
We define B
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Eq. (18) yields the cosine-square solution of Zeyen and Rem if only the
coe�cient a

1

= 1 is nonzero. We shift the integration path from 0 to L and
rewrite the function y(z) in a more compact form
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Anzatz: y = Fourier series 
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Figure 2: Optimized shape of the magnetic field for a minimization of the complete field
integral inhomogeneity Eq. (15) for N = 10 Fourier coe�cients in the function y(z)
(Eq. 19). From right to left, the curves have been obtained for a ⇡/2-flipper “detector”
diameter ranging from 4 cm (green) to 40 cm (red). The green solid curve corresponds
to the solution of Zeyen and Rem. The asymmetry is caused by the di↵erent sizes of
sample area at one extreem (z = 0) and detection area at the other extreem of integration
(z = L), the end of beam precession zone

The coe�cients can be calculated exactly 1

�
i,i

=
1

12
i2⇡2 +

1

8
(23)

1Note: these coe�cient apply if the beam parameters hr2
0

i, htan2 ✓i and h2r
0

tan ✓i are
computed in a coordinate definition where the sample is at z = 0 and r

0

= r(z = 0), and
the ⇡/2-flipper “detector” is at z = L.
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For a fair comparison, in the following chapters, with the values delivered
by our numerical simulations we calculate the RMS for the semi-analytical
solution. We need to evaluate

h�J2i =hr4
0

iH2 + htan4 ✓iG2 + h(2r
0

tan ✓)2iU2 + 2hr2
0

tan2 ✓iGH

+2h2r
0

tan3 ✓iGU + 2h2r3
0

tan ✓iHU, (31)

the expressions for the mean values h...i are reported in the Appendix. We
find for the relative inhomogeneity h�Ji

RMS

/J
0

' 215 ppm, which is about
8% higher than the value obtained with the linear mean value.

3. Previous work and existing systems

Up to now the (limited number of) high resolution spin-echo spectrom-
eters, that all are of the generic IN11 (solenoid) type except one, were not
explicitly optimized with respect to field integral inhomogeneity. The excep-
tion is the iNSE instrument at the JRR3 in Tokai, which used the optimized
coil shape from the analytic optimization of Zeyen and Rem [12]. The others
(IN11, IN15, MESS, J-NSE, SNS-NSE) are based on cylindrical solenoids
as main elements, eventually combined with some additions to reduce the
fringe field at certain positions or regions. In general a larger solenoid diam-
eter leads to lower field integral inhomogeneity but also to a larger and more
extended fringe field and also to increased investment and operation costs.
This trend can be recognized in figure 4 and table 1 where the somewhat
more narrow bore of the (original old version) of IN11 leads to larger integral
spread than for the other instruments. It is also interesting to note that the
optimized shape of Zeyen that has been realized in the iNSE spectrometer
slightly surpasses the homogeneity properties of the instruments with up to
2 times larger inner bore. A practical advantage of this type of winding
is (mainly due to the smaller diameter) the lower weight and power con-
sumption, however, on the expense of a more complicated winding scheme.
Besides the theoretical field integral inhomogeneity values that are derived
for perfect cylindrical coils or an arrangement of those in a real spectrome-
ter additional variations may occur due to imperfection of the winding. In
particular if the 1-2 cm thick copper “wire” is used as is the case for the
normal conducting solenoids. Superconducting coils can be made of 1 mm
wire with a better geometrical approximation of the perfect coil shape. In
superconducting systems, however, the hysteresis e↵ects due to trapped flux

13

What is the lowest possible rms inhomogeneity ? 

 à  215 ppm   
for  4cm sample, 20cm det (at pi/2) 



1m 10
−3
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Figure 4: Uncorrected inhomogeneity for a number of NSE instruments. From top to
bottom: homogeneous field, original IN11, IN15 [16], optimized field shape coil (Tokai)[16,
17], FZJ-NSE (also at NIST), SNS-NSE fully compensated, SNS-NSE inner solenoid only.
For comparison the path length was 3.085m in all cases. At the right side histograms of
the relative field integral di↵erences within a beam with diameter 4cm at start (sample)
and 10cm diameter at the end of the precession zone is shown a filled black area. The
unfilled histogram corresponds to a final diameter of 20 cm.
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be low. This latter condition has di↵erent aspects, one of them already is
partly addressed by the conditions for the field at the flipper positions. An-
other aspect is the mutual influence of the field of one spectrometer arm on
the field integral homogeneity in the other arm. Finally a general reduction
of fringe fields in the surrounding of the spectrometer is an issue. In our
implementation fringe field reduction may be imposed by using dipole mo-
ment compensated coupled coil pairs in the optimization procedure. The last
point is a bit more subtle, however, decisive for the quality of the solution.
It pertains the ability to correct the intrinsic inhomogeneities with three or
if possible better with two correction elements per spectrometer arm with
quadratic correcting function and the necessary correction magnitude. At
the end the solenoid arrangement is best if the resulting required corrector
strengths are minimal.

The program used to perform the optimization calculations is a derivative
of the Jülich family of nse-spectrometer operation programs, which is used in
simulation mode and has been augmented by functions to compute the op-
timization target function [6, 18]. The results presented here were obtained
by simplex optimization of this target function. The system holds a physical
image of all coils, flippers etc. of the spectrometer in the actual geometri-
cal configuration and thereby is able to compute all relevant magnetic field
values, field integrals and other derived measures once the currents are spec-
ified. The vector specifying these currents is automatically computed such
that a working NSE setup results by solving the following overdetermined
set of equations using singular value decomposition or related methods [18]:

NX

l=1

a1
l

I
l

= J
1

� ~B
o

· ~L
1

NX

l=1

a2
l

I
l

= J
2

� ~B
o

· ~L
2

NX

l=1

bi,j
l

I
l

= B
j

(~x
i

)� B
o,j

(~x
i

)

NX

l=1

(cc
l

� �
l,c

) I
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(32)

where J
1,2

are the requested field integrals as computed from the aimed
Fourier-time and the assumed wavelength. ~L

1,2

denote the primary or sec-
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Numerical optimisation.. 

...to have a functioning NSE 
spectrometer.... 

ondary precession paths, ~B
o

an external o↵set field (e.g. earth field) and
B

j

(~x
i

) the specified field components j at locations i. The a and b-coe�cients
are computed for the actual geometry of the coils and other magnetic ele-
ments. c are coe�cients that yield current couplings. Each line of this system
of equation may be multiplied by a weight factor that ensures a physical use-
ful solution of the overdetermined set of equations. If the solution of Eq. (32)
was successful i.e currents and residual deviations stay within their given lim-
its, the setting represent the state of the instrument ready to perform the
measurement. The algorithm is, as part of the operation program, in use at
the J-NSE (also at NIST) and the SNS-NSE.

For any given geometry and current setting the target functions that are
to be minimized are computed and according to the di↵erent simultaneous
conditions are combined with suitable weight factors. The contributions are:

1. Intrinsic field integral inhomogeneity:

�
inhom

=

vuut 1

N
paths

N

pathsX

i=1

(J
i

� hJi)2 (33)
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J
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Z
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| ~B(~x)|dl (34)

where N
paths

(typical values 20 · · · 100) denotes the number of integra-
tion paths between the starting points ~xstart

i

and ~xend

i

, which are located
at the sample or the ⇡-flipper and the ⇡/2-flipper respectively. The lat-
eral positions within a specified diaphragm are created randomly prior
to the optimization steps.

2. Field errors at selected and flipper, sample and other specified locations:

�
loc

=

vuut
N

locX

i=1

| ~B(~x
i

)� ~B
i

aimed|2 (35)

N
loc

is the number of specified field locations (typically 4, the flipper

and the sample positions) at ~x
i

with an expected/needed field ~B
i

aimed

.
This accounts for unavoidable di↵erences between the (least square
type) solution of Eq. (32) and the field values needed for proper nse-
operation.
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3. Depolarisation, adiabaticity condition:

�
depol

=
v
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where at N
depol

(here 3000) equidistant points along the path the field
~B(~x

i

) is evaluated and �B? is the field component of the di↵erence
between two consecutive points, ~x

i�1

and ~x
i

perpendicular to ~B(~x
i

).
4. Fringe field of one main solenoid set:

�
fringe

=

N

fringeX

i=1

| ~Bmainset1(~x fringe

i

)| (37)

where ~Bmainset1 is (unlike the general field values ~B(~x)) the field of the
main precession solenoid set only. ~xfringe

i

denote a number of external
points where the field is evaluated (here 5 points on-axis covering the
range of the second main solenoid are used).

5. Virtual correction coil (Fresnel) currents:

�
ccx

= |I
ccx

|. (38)

The correction coil currents are computed for an ideal quadratic correc-
tion element with 20 e↵ective turns and a size according to the beam
width (10 cm, 15 cm and 20 cm diameter). The computation is per-
formed using the ensemble of path integrals computed to evaluate Eq.
(33), assuming infinite thin current distribution with a linear increas-
ing current density j(r) = ↵

2

r with r the radial distance from the
beam axis, ↵

2

the current determining constant to be determined by
the iterative procedure described in Ref. [9].

6. Residual inhomogeneity after ideal quadratic correction: �
residual

is the
equivalent to Eq. (33), however, with 3 or 2 ideal radial correction
elements active. This reveals the importance of higher order (beyond
parabolic) corrections, allows to optimize the position of correction coils
if only two are used and to assess the influence of fringe fields from the
other spectrometer arm on the final inhomogeneity, if finite scattering
angles are used.

7. Homogeneity of the field across the ⇡/2-flipper:

�
hpi

= s| ~B(~x
⇡/2

)� ~B(~x
⇡/2

+ ê
z

d)|2 (39)
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points where the field is evaluated (here 5 points on-axis covering the
range of the second main solenoid are used).
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The correction coil currents are computed for an ideal quadratic correc-
tion element with 20 e↵ective turns and a size according to the beam
width (10 cm, 15 cm and 20 cm diameter). The computation is per-
formed using the ensemble of path integrals computed to evaluate Eq.
(33), assuming infinite thin current distribution with a linear increas-
ing current density j(r) = ↵

2

r with r the radial distance from the
beam axis, ↵

2

the current determining constant to be determined by
the iterative procedure described in Ref. [9].

6. Residual inhomogeneity after ideal quadratic correction: �
residual

is the
equivalent to Eq. (33), however, with 3 or 2 ideal radial correction
elements active. This reveals the importance of higher order (beyond
parabolic) corrections, allows to optimize the position of correction coils
if only two are used and to assess the influence of fringe fields from the
other spectrometer arm on the final inhomogeneity, if finite scattering
angles are used.
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with the o↵-center distance d (8 cm). Here the di↵erence between the
central field of the flipper and that at a height d in the flipper plane is
used as indicator for the field homogeneity across the flipper.

In the course of the minimization a linear combination of these �
X

val-
ues with weights W

X

adjusted to the allowed range of the corresponding
deviations is used as minimization target function.

4.1. Parameter variation and couplings

The free parameters to be determined by minimization are selected from
the geometrical solenoid parameters and their winding numbers, the correc-
tion coil positions, etc. Further, couplings between various of these parame-
ters can be defined such that the fit observes the thus specified correlations.
A general feature is that the solenoid set on the other arm of the spectrometer
is automatically kept symmetric. As option automatic generation of a fringe
field compensating part for each coil/solenoid part (yielding zero dipole mo-
ment) can be activated. In fact the finally presented solutions in this paper
rely on this option. The radius ratio between coil and compensation must
be preselected; a value close to

p
2 turns out to be the best choice for most

cases.
No additional functions were necessary to obtain realistic configurations

with reasonable dimensions and current densities and without collisions. In
particular it was not needed to add terms to the minimization target or
impose explicit limits or couplings in order to keep the dimensions of the
coils within limits. The set of simultaneous conditions that make up the
minimization target � =

P
7

X=1

W
x

�
X

turned out to be also e↵ective in
controlling the overall geometrical size, anchored by the selected given sample
to ⇡/2-flipper distance. The same was in general true for the avoidance of
coil collisions. In particular the risk of coil collision is very improbable under
the assumption that superconducting coils are used, because of their very
thin winding thickness, which for any realistic case is less than 1 cm.

The conduction of the optimization is performed by a sensible choice of
a starting configuration and minimizing from that by the simplex algorithm.
The minimization can be guided by weight factors W

X

and scale factors for
the parameters as well as parameter couplings.

Among the other strategies that can be employed to find a minimum of a
suitable target function � we mention the genetic algorithm (GA). This has
been used, for example, to design the wide-angle NSE to be build at ILL [19].
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NSE @ SNS

300 ppm0 ppm
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inhomogeneity

900 ppm

J−NSE @ MLZ

Figure 5: The correlation between the profile of the magnetic field along the axis (of
both the arms) and the value of the intrinsic inhomogeneity is shown for some selected
configurations, di↵ering in the number of segment coils. From bottom to top: a solution
with 2 and 3 segments, the one for the NSE at SNS and, at the top, the spectrometer
J-NSE at MLZ.

The coils configuration has been optimized i.e. for a field integral J of
1 Tm ( for a Fourier time of 100 ns for � = 8 Å). For the proposed NSE
at ESS we simulated a slightly longer secondary spectrometer than that at
MLZ and at SNS: A total distance of about 4.1 m from the sample to the
⇡/2 flipper was considered. A divergence of the neutron paths of ±1.4� and
a radius of the ⇡/2 flipper of 0.1 m has been considered. As a comparison,
the geometrical divergence for the J-NSE is ±1.7�. However the correcting
elements limit the divergence for a longer ⌧ to ±1.3�.

The number of segment coils is an issue of practical importance. On the
one hand, a many-coil discretization facilitates the modeling of the magnetic
field to the desired shape, but, on the other hand, a large number of segments
increases the complexity of the system. Thinking of the realization of the
spectrometer, the most simple geometry is to be preferred. We will present
here solutions with a number of (main precession) segment coils equal or
smaller than 6 (without counting the concentric compensating coils).
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coils. The slight modulation come from the discrete realization with 3 partial coils. Below
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at the entrance aperture and for the sample to define the incident
angle (and the scattering depth ⇤), which reduces the number of
neutrons dramatically On top, the evanescent wave is only seen by
the near surface structure within a distance of 40 to 100 nm, which
heavily restricts the scattering volume. The first experiments sufficiently
overcame the problem by huge interfaces and by samples that scatter
intrinsically strong. The boundary condition at total reflection used in
the grazing incidence method yields a factor of 2 for the immediate
amplitude of the evanescent wave at the interface which results in an
intensity gain of 4 compared to a plain illumination of the boundary
layer.

Neutron waveguides have been developed to increase the scattering
intensities from a highlighted zone even further [18]. In principle, two
situations must be distinguished: The structure of interest lies within
or outside the waveguide. The first situation limits the use of the
waveguide to one specific application, while a separate waveguide with
the intensity enhancement outside would be of wider interest for a whole
set of samples, because the complex fluid next to the waveguide can be
replaced easily. The manuscript summarizes the recent developments
and highlights the waveguide as the missing part for studying tribology
effects of complex fluids in contact with solids.

2. Instruments

Neutron reflectivity measurements have been performed at MARIA
at FRM2 in Garching [19]. This instrument uses neutron velocity selec-
tor with a 10% bandwidth for highest intensities. We used wavelengths
of 10 and 5 Å for higher (incident angle ↵

i

< 1.5

˝) and lower (↵
i

> 1

˝)
resolution. The vertical entrance and sample slits were of 2 mm ù 5 cm
size (1.5 cm at sample). The samples were kept in closed cells with a
sample thickness of 0.5 mm, but large areas of ca. 13 ù 5 cm at a silicon
slab of 15 ù 8 ù 4 cm3. The neutrons impinge through the silicon, get
reflected at the solid/liquid interface and leave through the silicon. The
whole cell is heated to 26 ˝C through a water mediated heater. The
sample is aligned and positioned by a hexapod. More details of the
instrument can be found in Ref. [19].

Neutron spin echo spectroscopy experiments have been performed at
the J-NSE, Garching and the SNS-NSE, Oak Ridge. The first instrument
used a single wavelength of 8 Å (10% velocity selector) while the second
one used a wavelength band of 5 to 8 Å. The latter analyzed the actual
wavelength by time of flight analysis to a resolution of ca. ±0.1 Å.
Both instruments were equipped with an additional entrance aperture
of 2 mm x 6 cm. Close to the sample cell (as described above) unwanted
neutron paths were blocked using boron and cadmium based materials.
Acquisition times for one scattering vector and the full range of Fourier
times were ca. 1 day. Further details of the instruments are found in
Refs. [20,21] and [22].

3. GINSES measurements

Two example measurements of relaxation curves for the systems
SoyPC in D

2

O [18] and a bicontinuous microemulsion, both adjacent
to a hydrophilic silicon surface, are shown in Fig. 1. We used the two
proposed tools, i.e. a neutron prism and the resonator simultaneously for
this measurement. The lipid L-alpha-phosphatidylcholine from soybeans
(SoyPC) forms well ordered lamellar bilayers close to the solid–liquid
interface [23]. While the Bragg peak of this structure is well pronounced
and quite sharp, the bilayer relaxations are observed much better
at scattering vectors deviating from the Bragg peak, which virtually
shows no dynamics (DeGennes narrowing). This implies the use of Q-
values with low intensities, where, however, a reasonable fluctuation
dynamics signal dominates the scattering and grazing incidence neutron
spin echo experiments can be performed. Thus, the resonator was
extremely important to obtain meaningful statistics. Interestingly, the
asymmetry of incident and exit angles lead to a rather small in-plane
scattering vector that made collective long-wavelength modes visible,

Fig. 1. The relaxation curves measured by grazing incidence neutron spin echo spec-
troscopy of lamellar lipid bilayer stacks (left) and of a bicontinuous microemulsion with
lamellar near-surface ordering (right). The scattering depth was 200 and 240 Å. While
the incidence angles were below the critical angle of total reflection, the exit angles were
at considerable values according to the indicated Q (or Q

Ú

). This asymmetry lead to in-
plane Q

fl

vectors that are essential for the physics of well oriented lipid bilayers (left) but
negligible in the case of microemulsions (right, where omitted).

Fig. 2. The scattering geometry of a grazing incidence neutron spin echo spectroscopy
(GINSES) experiment using a neutron prism and a resonator that is ideally suited for
pulsed neutron sources. The sample is a microemulsion adjacent to the layered resonator
structure. The green area inside the microemulsion indicates the enhanced evanescent
wave. The detector plain shows a typical scattering image of a microemulsion. The red
open dot indicates the typical Q-vector of the GINSES experiment.

that possessed enough elasticity to overcome the usual over-damping
of soft matter systems. These modes allow for energy dissipation over
large distances, and might explain the stability of cartilage in joints. The
cartilage consists of proteins and lamellar lipid arrangements [24,25].

The set of the prism and resonator also allowed the strongly scatter-
ing microemulsion to be characterized at higher scattering angles, where
the intensities decrease considerably (Sketch in Fig. 2). While first mea-
surements without resonator were successfully analyzed at intermediate
scattering vectors, where the collective and single-membrane modes still
mix, the experiments presented here allow for analyzing smaller length
scales where only single-membrane modes meet the theoretically well
developed model of Zilman and Granek. The confinement conditions by
the solid surface lead to an extension by the theory of Seifert [17]. The
intensity gain of the microemulsion through the resonator was ca. 3.

The asymmetric setting of the GINSES experiment (Fig. 2) goes back
on the condition of the incident angle ↵

i

, which must be below the
critical angle of total reflection ↵

c

. So the exit angle ↵

f

is much bigger
than ↵

i

. This causes a small in plane Q-vector component Q
fl

that is
essential for the observation of the viscoelastic behavior of lipid bilayer
stacks, but negligible for microemulsions. The normal component Q

Ú

is
always dominating.
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Neutron spin echo spectroscopy provides highest energy 
resolution by encoding the neutron velocity with spin 
precessions in a magnetic field.  
Upgrade from normal conducting NSE to superconducting 
NSE with optimized field shape in 2017.   
Field integral increased from 0.5 Tm to 1.2 Tm 
At λ = 8 Å: from 40 ns à 100 ns  
At λ = 10 Å à 200 ns (before λ = 15 Å needed   
                   à Intensity x 10) 
(target with further adjustment: 500 ns with λ = 15 Å ) 
 
20% wavelength band à Intensity x 2  
 
  

Highest Resolution 

Measuring relative velocity changes Δv/v = 10-5 requires 
highest precision and homogeneity of the magnetic fields in 
the precession region à segmented main coils provide 2-3 x 
better homogeneity. Fully compensated coils for minimum 
crosstalk only possible with superconducting coils. 
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NSE combined with computer simulations 
 

Rg of the CCSS microgel is rather close to that of the collapsed
one. Again, this is in agreement with the experimental findings.
In the q range 0.8 < ql < 3.0, S(q) of the swollen microgels

exhibits approximately the power-law dependence S(q) ∼ q−1/ν,
with ν = 0.62. The scaling exponent ν is slightly larger than the
theoretical prediction for a polymer in good solvent63 ν = 0.59,
which is partially attributed to shortness of the polymers.47 The
structure factor of a collapsed microgel is proportional to q−4 in
the range 0.3 ≲ ql ≲ 1.0, in close agreement with Porod’s

approximation for systems with sharp boundaries. The
scattering profiles for core−shell microgels exhibit a somewhat
different behavior. In the low-q regime, core−shell microgels
show characteristics of a collapsed microgel, while for large q
values, the slope of the scattering functions is closer to that of
the swollen microgel. However, we cannot identify a clear
power-law regime any longer, which we partly attribute to the
shortness of the polymers.

3.2. Internal Dynamics. 3.2.1. Experiment. The internal
microgel dynamics is characterized by the intermediate
scattering function S(q,t). As shown in Figure 6, the ratio
S(q,t)/S(q,0) measured by NSE shows the same trend for both
CCSS and SCCS microgels for the two smallest scattering
vectors q = 0.05 and 0.08 Å−1. In fact, the dynamics is rather
similar to that of (partially) collapsed microgels. The scattering
signal of both core−shell microgels basically overlaps with that
of bare PNIPAM microgels.
The intermediate scattering functions for the large q values

(q = 0.11 and 0.15 Å−1) are rather different. As displayed in
Figure 7 for the CCSS microgels and in Figure 8 for SCCS
microgels, S(q,t)/S(q,0) exhibits an initial fast decay followed
by a slower one for longer times. In the case of CCSS
microgels, the later decay is slower, in-between that of the
swollen and collapsed bare microgels. In the case of SCCS
microgels, the long-time decay overlaps with the decay for the
partially collapsed bare PNIPAM.

3.2.2. Simulation. In the simulations, the intermediate
scattering function is determined according to

∑= ⟨ · − ⟩
=

S q t
N

i tq r r( , ) 1 exp[ ( ( ) (0))]
i j

N

j i
, 1 (6)

This function follows the universal scaling relation

= γS q t S q f q t( , ) ( , 0) ( ) (7)

for suitable wavenumbers and time scales for polymers under
Theta and good solvent conditions.63,64 The analytical
calculation for a flexible Gaussian polymer and scaling
considerations for a polymer with excluded volume interactions
in solution (Zimm model) yields an exponential function for
f(x), with x ∼ (qγt)2/γ and γ = 3.64−66 Polymer stiffness changes
the exponent to γ = 8/3 for semiflexible polymers.64 The
structure factor (Figure 5) and the monomer mean-square
displacement in the center-of-mass reference frame (cf. inset of
Figure 9) suggest a universal regime for 1.0 < ql < 2.0 and

< <t ma k T20 / / 1002
B . As displayed by Figure 9, the

intermediate scattering curve follows the scaling relation of eq 7

Figure 3. Snapshots taken from simulations of swollen, collapsed, CCSS, and SCCS microgels. The red beads represent the cross-links. For the
CCSS and SCCS microgels, the blue part represents the core and the cyan part the shell.

Figure 4. Radial monomer distribution function for swollen, collapsed,
CCSS, and SCCS microgels. The inset figures show the distribution
functions for CCSS (top) and SCCS (botton) microgels with
contributions from core (orange) and shell (violet) compartments
separately. The absolute radii of gyration for swollen, collapsed, CCSS,
and SCCS microgels are Rg/l = 30.5, 13.51, 16.3, and, 19.4,
respectively.

Figure 5. Static structure factor profiles of swollen, collapsed, and
core−shell microgels. The upper dashed line, corresponding to
∼ql1/0.63, is obtained by fitting the S(q) curve of the bare swollen
microgel in the interval 0.8 ≲ ql ≲ 2.0, and the lower dashed line,
corresponding to ∼ql1/0.53, is obtained by fitting S(q) of the bare
collapsed microgel in the interval 0.8 ≲ ql ≲ 1.5.
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at the entrance aperture and for the sample to define the incident
angle (and the scattering depth ⇤), which reduces the number of
neutrons dramatically On top, the evanescent wave is only seen by
the near surface structure within a distance of 40 to 100 nm, which
heavily restricts the scattering volume. The first experiments sufficiently
overcame the problem by huge interfaces and by samples that scatter
intrinsically strong. The boundary condition at total reflection used in
the grazing incidence method yields a factor of 2 for the immediate
amplitude of the evanescent wave at the interface which results in an
intensity gain of 4 compared to a plain illumination of the boundary
layer.

Neutron waveguides have been developed to increase the scattering
intensities from a highlighted zone even further [18]. In principle, two
situations must be distinguished: The structure of interest lies within
or outside the waveguide. The first situation limits the use of the
waveguide to one specific application, while a separate waveguide with
the intensity enhancement outside would be of wider interest for a whole
set of samples, because the complex fluid next to the waveguide can be
replaced easily. The manuscript summarizes the recent developments
and highlights the waveguide as the missing part for studying tribology
effects of complex fluids in contact with solids.

2. Instruments

Neutron reflectivity measurements have been performed at MARIA
at FRM2 in Garching [19]. This instrument uses neutron velocity selec-
tor with a 10% bandwidth for highest intensities. We used wavelengths
of 10 and 5 Å for higher (incident angle ↵

i

< 1.5

˝) and lower (↵
i

> 1

˝)
resolution. The vertical entrance and sample slits were of 2 mm ù 5 cm
size (1.5 cm at sample). The samples were kept in closed cells with a
sample thickness of 0.5 mm, but large areas of ca. 13 ù 5 cm at a silicon
slab of 15 ù 8 ù 4 cm3. The neutrons impinge through the silicon, get
reflected at the solid/liquid interface and leave through the silicon. The
whole cell is heated to 26 ˝C through a water mediated heater. The
sample is aligned and positioned by a hexapod. More details of the
instrument can be found in Ref. [19].

Neutron spin echo spectroscopy experiments have been performed at
the J-NSE, Garching and the SNS-NSE, Oak Ridge. The first instrument
used a single wavelength of 8 Å (10% velocity selector) while the second
one used a wavelength band of 5 to 8 Å. The latter analyzed the actual
wavelength by time of flight analysis to a resolution of ca. ±0.1 Å.
Both instruments were equipped with an additional entrance aperture
of 2 mm x 6 cm. Close to the sample cell (as described above) unwanted
neutron paths were blocked using boron and cadmium based materials.
Acquisition times for one scattering vector and the full range of Fourier
times were ca. 1 day. Further details of the instruments are found in
Refs. [20,21] and [22].

3. GINSES measurements

Two example measurements of relaxation curves for the systems
SoyPC in D

2

O [18] and a bicontinuous microemulsion, both adjacent
to a hydrophilic silicon surface, are shown in Fig. 1. We used the two
proposed tools, i.e. a neutron prism and the resonator simultaneously for
this measurement. The lipid L-alpha-phosphatidylcholine from soybeans
(SoyPC) forms well ordered lamellar bilayers close to the solid–liquid
interface [23]. While the Bragg peak of this structure is well pronounced
and quite sharp, the bilayer relaxations are observed much better
at scattering vectors deviating from the Bragg peak, which virtually
shows no dynamics (DeGennes narrowing). This implies the use of Q-
values with low intensities, where, however, a reasonable fluctuation
dynamics signal dominates the scattering and grazing incidence neutron
spin echo experiments can be performed. Thus, the resonator was
extremely important to obtain meaningful statistics. Interestingly, the
asymmetry of incident and exit angles lead to a rather small in-plane
scattering vector that made collective long-wavelength modes visible,

Fig. 1. The relaxation curves measured by grazing incidence neutron spin echo spec-
troscopy of lamellar lipid bilayer stacks (left) and of a bicontinuous microemulsion with
lamellar near-surface ordering (right). The scattering depth was 200 and 240 Å. While
the incidence angles were below the critical angle of total reflection, the exit angles were
at considerable values according to the indicated Q (or Q

Ú

). This asymmetry lead to in-
plane Q

fl

vectors that are essential for the physics of well oriented lipid bilayers (left) but
negligible in the case of microemulsions (right, where omitted).

Fig. 2. The scattering geometry of a grazing incidence neutron spin echo spectroscopy
(GINSES) experiment using a neutron prism and a resonator that is ideally suited for
pulsed neutron sources. The sample is a microemulsion adjacent to the layered resonator
structure. The green area inside the microemulsion indicates the enhanced evanescent
wave. The detector plain shows a typical scattering image of a microemulsion. The red
open dot indicates the typical Q-vector of the GINSES experiment.

that possessed enough elasticity to overcome the usual over-damping
of soft matter systems. These modes allow for energy dissipation over
large distances, and might explain the stability of cartilage in joints. The
cartilage consists of proteins and lamellar lipid arrangements [24,25].

The set of the prism and resonator also allowed the strongly scatter-
ing microemulsion to be characterized at higher scattering angles, where
the intensities decrease considerably (Sketch in Fig. 2). While first mea-
surements without resonator were successfully analyzed at intermediate
scattering vectors, where the collective and single-membrane modes still
mix, the experiments presented here allow for analyzing smaller length
scales where only single-membrane modes meet the theoretically well
developed model of Zilman and Granek. The confinement conditions by
the solid surface lead to an extension by the theory of Seifert [17]. The
intensity gain of the microemulsion through the resonator was ca. 3.

The asymmetric setting of the GINSES experiment (Fig. 2) goes back
on the condition of the incident angle ↵

i

, which must be below the
critical angle of total reflection ↵

c

. So the exit angle ↵

f

is much bigger
than ↵

i

. This causes a small in plane Q-vector component Q
fl

that is
essential for the observation of the viscoelastic behavior of lipid bilayer
stacks, but negligible for microemulsions. The normal component Q

Ú

is
always dominating.
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The new high-resolution neutron spin-echo 
spectrometer (J-NSE) at MLZ  

Stefano Pasini1, Olaf Holderer1, Michael Monkenbusch2, Tadeusz Kozielewski2 
1Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany 
2Jülich Centre for Neutron Science (JCNS), Jülich, Germany 
 

Neutron spin echo spectroscopy provides highest energy 
resolution by encoding the neutron velocity with spin 
precessions in a magnetic field.  
Upgrade from normal conducting NSE to superconducting 
NSE with optimized field shape in 2017.   
Field integral increased from 0.5 Tm to 1.2 Tm 
At λ = 8 Å: from 40 ns à 100 ns  
At λ = 10 Å à 200 ns (before λ = 15 Å needed   
                   à Intensity x 10) 
(target with further adjustment: 500 ns with λ = 15 Å ) 
 
20% wavelength band à Intensity x 2  
 
  

Highest Resolution 

Measuring relative velocity changes Δv/v = 10-5 requires 
highest precision and homogeneity of the magnetic fields in 
the precession region à segmented main coils provide 2-3 x 
better homogeneity. Fully compensated coils for minimum 
crosstalk only possible with superconducting coils. 

Optimized field homogeneity and superconducting 
coils 
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Shorty-modus for Fourier-times down to  ~10ps 
 

Polymer Dynamics in Confinement 
 

NSE combined with computer simulations 
 

Rg of the CCSS microgel is rather close to that of the collapsed
one. Again, this is in agreement with the experimental findings.
In the q range 0.8 < ql < 3.0, S(q) of the swollen microgels

exhibits approximately the power-law dependence S(q) ∼ q−1/ν,
with ν = 0.62. The scaling exponent ν is slightly larger than the
theoretical prediction for a polymer in good solvent63 ν = 0.59,
which is partially attributed to shortness of the polymers.47 The
structure factor of a collapsed microgel is proportional to q−4 in
the range 0.3 ≲ ql ≲ 1.0, in close agreement with Porod’s

approximation for systems with sharp boundaries. The
scattering profiles for core−shell microgels exhibit a somewhat
different behavior. In the low-q regime, core−shell microgels
show characteristics of a collapsed microgel, while for large q
values, the slope of the scattering functions is closer to that of
the swollen microgel. However, we cannot identify a clear
power-law regime any longer, which we partly attribute to the
shortness of the polymers.

3.2. Internal Dynamics. 3.2.1. Experiment. The internal
microgel dynamics is characterized by the intermediate
scattering function S(q,t). As shown in Figure 6, the ratio
S(q,t)/S(q,0) measured by NSE shows the same trend for both
CCSS and SCCS microgels for the two smallest scattering
vectors q = 0.05 and 0.08 Å−1. In fact, the dynamics is rather
similar to that of (partially) collapsed microgels. The scattering
signal of both core−shell microgels basically overlaps with that
of bare PNIPAM microgels.
The intermediate scattering functions for the large q values

(q = 0.11 and 0.15 Å−1) are rather different. As displayed in
Figure 7 for the CCSS microgels and in Figure 8 for SCCS
microgels, S(q,t)/S(q,0) exhibits an initial fast decay followed
by a slower one for longer times. In the case of CCSS
microgels, the later decay is slower, in-between that of the
swollen and collapsed bare microgels. In the case of SCCS
microgels, the long-time decay overlaps with the decay for the
partially collapsed bare PNIPAM.

3.2.2. Simulation. In the simulations, the intermediate
scattering function is determined according to

∑= ⟨ · − ⟩
=

S q t
N

i tq r r( , ) 1 exp[ ( ( ) (0))]
i j

N

j i
, 1 (6)

This function follows the universal scaling relation

= γS q t S q f q t( , ) ( , 0) ( ) (7)

for suitable wavenumbers and time scales for polymers under
Theta and good solvent conditions.63,64 The analytical
calculation for a flexible Gaussian polymer and scaling
considerations for a polymer with excluded volume interactions
in solution (Zimm model) yields an exponential function for
f(x), with x ∼ (qγt)2/γ and γ = 3.64−66 Polymer stiffness changes
the exponent to γ = 8/3 for semiflexible polymers.64 The
structure factor (Figure 5) and the monomer mean-square
displacement in the center-of-mass reference frame (cf. inset of
Figure 9) suggest a universal regime for 1.0 < ql < 2.0 and

< <t ma k T20 / / 1002
B . As displayed by Figure 9, the

intermediate scattering curve follows the scaling relation of eq 7

Figure 3. Snapshots taken from simulations of swollen, collapsed, CCSS, and SCCS microgels. The red beads represent the cross-links. For the
CCSS and SCCS microgels, the blue part represents the core and the cyan part the shell.

Figure 4. Radial monomer distribution function for swollen, collapsed,
CCSS, and SCCS microgels. The inset figures show the distribution
functions for CCSS (top) and SCCS (botton) microgels with
contributions from core (orange) and shell (violet) compartments
separately. The absolute radii of gyration for swollen, collapsed, CCSS,
and SCCS microgels are Rg/l = 30.5, 13.51, 16.3, and, 19.4,
respectively.

Figure 5. Static structure factor profiles of swollen, collapsed, and
core−shell microgels. The upper dashed line, corresponding to
∼ql1/0.63, is obtained by fitting the S(q) curve of the bare swollen
microgel in the interval 0.8 ≲ ql ≲ 2.0, and the lower dashed line,
corresponding to ∼ql1/0.53, is obtained by fitting S(q) of the bare
collapsed microgel in the interval 0.8 ≲ ql ≲ 1.5.

Macromolecules Article

DOI: 10.1021/acs.macromol.6b00232
Macromolecules XXXX, XXX, XXX−XXX

E
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PEP in decane (old, new) 
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Figure	2:	JNSE	vs.	IN15.	The	dashed	lines	are	the	fi<ed	theory	for	the	IN15	old	data	(as	a	
global	fit);	they	are	re-computed	with	tau	and	Wl4	(see	theory	in	the	text)	rescaled	by	a	
factor	1.4,	solid	curves.	The	re-computed	curves	can	be	compared	with	the	JNSE	data	
(symbols).	The	solid	curves	are	not	a	fit	of	the	JNSE	data.	For	sake	of	clarity	the	old	IN15	data	
are	not	shown.	
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A “real world example”: 
 
protein solution (3% in D2O) 
 
using different wavelengths from 6 to 
12.5 Å 
 
and DrSpine (under development) for 
evaluation 
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apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

With background subtraction: transmission factor= 1.0000 volfrac= 1.0000
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�
,
a 0

an
d
b 0

apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

� b
0

a
0

Fitting model:
F (q, t) = a0

⇥
exp{�(t/⌧)�}

⇤
+ b0 (1)

Expression for the e↵ective di↵usion constant:

De↵(q) =
1

(⌧0/�)�(1/�) q2
(2)

18

report20171_308.tex 

λ = 12.5Å 



Apr 2018 

apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

With background subtraction: transmission factor= 1.0000 volfrac= 1.0000

0 50 100 150
0

0.2

0.4

0.6

0.8

1

⌧ / ns

F
(q
,t
)

apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

q=0.056 q=0.056

10�3 10�2 10�1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

⌧ / ns

F
(q
,t
)

apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

q=0.056 q=0.056

0 2 · 10�2 4 · 10�2 6 · 10�2 8 · 10�2 0.1
0

2

4

6

q / Å�1
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apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

With background subtraction: transmission factor= 1.0000 volfrac= 1.0000
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Expression for the e↵ective di↵usion constant:
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apoMbpD6 ”apoMb pD6 3 percent [ 1, 800]

With background subtraction: transmission factor= 1.0000 volfrac= 1.0000
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Expression for the e↵ective di↵usion constant:

De↵(q) =
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Extension to short times 
“Shorty” 

P P P = precession 

π/2 : flipper 

π/2 π/2 
π : flipper	

π	

S

S : sample 



“Shorty” demo experiment: incoherent scattering from H2O 

Q=0.35 Å-1 

Lit: D = 229.9 A2/ns 



Apr 2018 

Thank you for your 
attention ! 


