

FIRST RESULTS FROM THE REFURBISHED J-NSE SPECTROMETER WITH SUPERCONDUCTING COILS

APRIL 2018 I M. MONKENBUSCH

TEAM

Stefano Pasini, JCNS MLZ Olaf Holderer, JCNS MLZ Teddy Kozielewski, JCNS FZJ Guido Vehres, JCNS Fabian Beule, JCNS

Christoph Tiemann, ZEA1 FZJ Richard Achten, ZEA1 FZJ Ulrich Giesen, ZEA1 FZJ

Michael Wagner, ZEA2 FZJ

. . . .

THE REALM OF NEUTRON SPIN ECHO

H

High-Resolution NSE worldwide

Medium-Resolution NSE worldwide

NSE spectrometer: (elastic scattering)

NSE spectrometer: (quasielastic scattering)

Principle of NSE : Summary

"homogeneity" of field integrals determines the resolution

Resolution correction

Ansatz [Zeyen & Rem]:

$$B_{z}(z,r) = B_{z}(z,0) - \frac{1}{4}r^{2}\partial_{z}^{2}B_{z}(z,0) + O(r^{4})$$
$$B_{r}(z,r) = -\frac{1}{2}r\partial_{z}B_{z}(z,0) + O(r^{3}).$$

$$J = \sqrt{1 + \tan^2 \theta} \int_{-L/2}^{L/2} dz \left[B_z(z) + r^2 \underbrace{\left\{ \frac{1}{8} \frac{(\partial_z B_z(z))^2}{B_z(z)} - \frac{1}{4} \partial_z^2 B_z(z) \right\}}_{\beta(z)} \right] + \mathcal{O}\left(r^4\right),$$

$$J = J_0 + Hr_0^2 + G\tan^2\theta$$

$$J_{0} = \int_{-L/2}^{L/2} dz \ B_{z}(z),$$

$$H = \int_{-L/2}^{L/2} dz \ \beta(z),$$

$$G = \frac{J_{0}}{2} + \int_{-L/2}^{L/2} dz \ z^{2}\beta(z).$$

Minimize!

$$\langle \Delta J[B(z)] \rangle = \langle \left(\sqrt{1 + \tan^2 \theta} - 1 \right) \rangle J_0 + \langle \sqrt{1 + \tan^2 \theta} \int_{-L/2}^{L/2} r(z)^2 \beta(z) dz \rangle$$
$$\simeq \langle \tan^2 \theta \rangle \ G + \langle r_0^2 \rangle \ H + \langle 2r_0 \tan \theta \rangle \ U,$$
(15)

with

$$U = \int_{-L/2}^{L/2} z\beta(z) dz,$$
 (16)

where $r^2(z) = (r_0 + z \tan \theta)^2$ and $\langle \cdots \rangle$ denotes the average over the path parameters r_0 and θ within the beam defining path ensemble.

Anzatz:
$$B_z(z) = B_0 \ y(z)^2,$$
 y = Fourier series

Field shape B(z)

S.Pasini, M.Monkenbusch, MEASUREMENT SCIENCE AND TECHNOLOGY **26** 035501(2015)

What is the lowest possible rms inhomogeneity?

$$\begin{split} \langle \Delta J^2 \rangle = \langle r_0^4 \rangle H^2 + \langle \tan^4 \theta \rangle G^2 + \langle (2r_0 \tan \theta)^2 \rangle U^2 + 2 \langle r_0^2 \tan^2 \theta \rangle GH \\ + 2 \langle 2r_0 \tan^3 \theta \rangle GU + 2 \langle 2r_0^3 \tan \theta \rangle HU, \end{split}$$

→ **215 ppm**

for 4cm sample, 20cm det (at pi/2)

The ,older' instruments

Numerical optimisation...

$$\sum_{l=1}^{N} a_{l}^{1} I_{l} = J_{1} - \vec{B}_{o} \cdot \vec{L}_{1}$$

$$\sum_{l=1}^{N} a_{l}^{2} I_{l} = J_{2} - \vec{B}_{o} \cdot \vec{L}_{2}$$

$$\sum_{l=1}^{N} b_{l}^{i,j} I_{l} = B_{j}(\vec{x}_{i}) - B_{o,j}(\vec{x}_{i})$$

$$\sum_{l=1}^{N} (c_{l}^{c} - \delta_{l,c}) I_{l} = I_{fixed}^{c}$$

...to have a functioning NSE spectrometer....

$$\begin{split} \Delta_{\rm inhom} &= \sqrt{\frac{1}{N_{\rm paths}}} \sum_{i=1}^{N_{\rm paths}} (J_i - \langle J \rangle)^2 & \Delta_{\rm loc} = \sqrt{\sum_{i=1}^{N_{\rm loc}} |\vec{B}(\vec{x}_i) - \vec{B}_i^{\rm aimed}|^2} & ... \text{to reduce} \\ \Delta_{\rm depol} &= \frac{v}{2\pi\gamma} \sum_{i=1}^{N_{\rm depol}} \left| \frac{\delta B_{\perp}(\vec{x}_i)}{\vec{x}_i - \vec{x}_{i+1}} \right| \frac{1}{B(\vec{x}_i)^2} & \Delta_{\rm fringe} = \sum_{i=1}^{N_{\rm tringe}} |\vec{B}^{\rm mainset1}(\vec{x}_i^{\rm fringe})| & ... \\ \Delta_{\rm ccx} &= \left| I_{\rm ccx} \right| . & \Delta_{\rm hpi} = s |\vec{B}(\vec{x}_{\pi/2}) - \vec{B}(\vec{x}_{\pi/2} + \hat{e}_z d)|^2 \\ \text{minimize} & \Delta &= \sum_{X=1}^{7} W_X \Delta_X \end{split}$$

Correction element

FRJ2-NSE 1996 Ella

\rightarrow now \rightarrow @ FRM II

Mitglied der Helmholtz-Gemeinschaft

Apr 2018

Mitglied der Helmholtz-Gemeinschaft

Apr 2018

J-NSE "PHOENIX"

J-NSE new ranges

1 ns 8 A ref

Mitglied der Helmholtz-Gemeinschaft

Apr 2018

ref 1ns (8A): full echo in all pixels: NO bad hysteresis effects

PI80klin (./fits_200481 echo[1])

Polymer melt 1ns (8A): only slight reduction of echo amplitude

ref 90ns (8A): good echos in central field (correction effective)

Polymer 90ns (8A): reduced echoes (relaxation compared to ref)

Figure 2: JNSE vs. IN15. The dashed lines are the fitted theory for the IN15 old data (as a global fit); they are re-computed with tau and Wl⁴ (see theory in the text) rescaled by a factor 1.4, solid curves. The re-computed curves can be compared with the JNSE data (symbols). The solid curves are not a fit of the JNSE data. For sake of clarity the old IN15 data are not shown.

A "real world example":

protein solution (3% in D2O)

using different wavelengths from 6 to 12.5 Å

and *DrSpine* (under development) for evaluation

JÜLICH Forschungszentrum

Apr 2018

 $\lambda = 10$ Å

Mitglied der Helmholtz-Gemeinschaft

Apr 2018

apoMbpD6_"apoMb_pD6_3_percent_ [1, 800] With background subtraction: transmission factor= 1.0000 volfrac= 1.0000

 $\lambda = 8$ Å

Mitglied der Helmholtz-Gemeinschaft

Apr 2018

apoMbpD6_"apoMb_pD6_3_percent_ [1, 800] With background subtraction: transmission factor= 1.0000 volfrac= 1.0000

Mitglied der Helmholtz-Gemeinschaft

 $\lambda = 6 \text{\AA}$

Extension to short times "Shorty"

P = precession

 $\pi/2$: flipper

 π : flipper

S : sample

"Shorty" demo experiment: incoherent scattering from H2O

Thank you for your attention !

