

Focusing neutron optics with elastically bent perfect crystals

Jiří Kulda

Institut Laue-Langevin, Grenoble, France

Acknowledgements

J. Saroun, P. Mikula	NPI Rez near Prague
D. Mrazek, B. Lukas	Polovodice, Prague
D. Korytar	IEE SAS Piestany

B. Janousova, M. Kempa	ILL / Charles University, Prague	
M. Boehm, A. Hiess, S. Roux P. Flores P. Courtois, C. Menthonex	ILL	
JP. Vassali	ESRF	
JM. Bisson, G. Pastrello AZ Systemes, Grenoble		

Layout of the talk

- 1. Optics
- 2. Technology
- 3. Applications
 - 1. General TAS
 - 2. Fine focusing reciprocal space
 - 3. Fine focusing real space
- 4. Conclusions

sample size > 1 cm3 \rightarrow 100 mm3

intensity gain ≈ 30x

Mosaic crystal

Mosaic crystal reflectivity

Gradient crystals

Simple bending

Simple d_{hkl} gradient)

Gradient crystals

Gradient vers. mosaic

Reflection profile

Integrated reflectivity

$$\rho(\Theta) = \frac{\Delta x}{R} \left[1 - \exp\left(\frac{Q_{kin}R}{\cos\Theta}\right) \right]$$

J. Kulda, Acta Cryst. A40 (1984) 120

- almost rectangular rocking curve with minimum tails
- smaller crystal thickness required to achieve given reflectivity

Focusing properties

real space

Kulda & Saroun, Nucl. Inst. Meth. A379 (1996) 155

Gradient crystals

Kulda & Saroun, Nucl. Inst. Meth. A379 (1996) 155

RESTRAX

- neutron ray-tracing or multi-Gaussian convolution
- diffraction/reflection optics of neutron instruments
- realistic crystal description (mosaic, elastically bent)
- highly optimized F77/F95 code

http://omega.ujf.cas.cz/restrax

Layout of the talk

- 1. Optics
- 2. Technology
- 3. Applications
 - 1. General TAS
 - 2. Fine focusing reciprocal space
 - 3. Fine focusing real space
- 4. Conclusions

Si bender - function scheme

• horizontal focusing: four-point bending device

• vertical focusing: inclining segments & bell-shaped cams

 $R_v = 0.2 \text{ m} - \text{inf.}$

Si bender - 1st generation

1st generation:

- variable horizontal curvature
- fixed vertical curvature
- 3 vertical segments (40 mm)
- blade thickness 3-5 mm
- active length 120 mm

2nd generation:

- variable horizontal AND vertical curvature
- segment height < 20 mm
- blade thickness < 1 mm
 (> 10 per pack)

Si bender - front

Si bender - back

Si wafers

- 99 wafers (11 segments, 9 wafers each)
- size 265 x 17 x 1 mm³
- largest face (111)
- surface as-cut (mutiwire saw!) & etched

X-ray tests (I)

X-ray tests (II)

 $\Delta \theta$

X-ray tests (III)

Layout of the talk

- 1. Optics
- 2. Technology
- 3. Applications
 - 1. General TAS
 - 2. Fine focusing reciprocal space
 - 3. Fine focusing real space
- 4. Conclusions

monochromatic flux $\approx 1/3$ PG

IN1, IN8, IN20, ThALES

Monochromator

Crystal	W x H (mm ²)	ki/Å⁻¹	flux/10 ⁸ n cm ⁻² s ⁻ 1
PG (002) double focusing, three faces	233x197	2.662 4.1	2.0 6.5
Cu (200) variable double-focusing, anisotropic mosaic (h:25', v:10')	233x197	4.1 7.0	4.6 3.0
Si (111) bent perfect crystals, fixed horiz. curvature optimized for k=3.5Å ⁻¹	180x197	2.662 4.1	0.8 3.4

Bragg width (PMN 100)

PG-PG	open	DTR 40
PG-PG	40' – 40'	DTR 40
Si-Si	open	DTR 10
Si-Si	40' – 40'	DTR 40

Phonons & QE signal (PMN 110)

FlatCone multianalyzer

CuGeO₃

$CuGeO_3$ with IN14/FC

Layout of the talk

- 1. Optics
- 2. Technology
- 3. Applications
 - 1. General TAS
 - 2. Fine focusing reciprocal space
 - 3. Fine focusing real space
- 4. Conclusions

Neutron TAS

Neutron Three-Axis Spectrometers:

- access to large Q, ω range
- energy resolution $\Delta E/E \approx 5-10\%$
- efficient for $\omega(q)$
- lacking resolution for $\Gamma(q)$

TAS resolution

normal TAS setup with perfect monochromator & analyzer crystals (Si, Ge)

TAS resolution

TASSE vers. high resolution TAS

IN20

Si111/Si111 $R_M = R_A = 50 \text{ m}$ sample volume < 0.5 cm³

A. Goebel et al., Phys. Rev. B58 (1998) 10510

Layout of the talk

- 1. Optics
- 2. Technology
- 3. Applications
 - 1. General TAS
 - 2. Fine focusing reciprocal space
 - 3. Fine focusing real space
- 4. Conclusions

Microfocusing crystal optics

PG002 horizontal focus (RESTRAX ray-tracing)

Paris-Edinburgh High pressure cell

Si111 horizontal focus (RESTRAX ray-tracing)

Si (111) microfocusing tests

IN20 (2009)

horizontal (focused)

 $D \approx 10 \text{ mm}$

 $D \approx 1 \text{ mm}$

vertical ($D \approx 2 \text{ mm}$)

defocused

Vertical focusing Si111

Vertical focusing aberrations

- standard TAS devices approximate cylindrical surface by a flat array of tilted slabs
- in high resolution mode aberrations due to varaitions in θ_{B} become apparent
 - develop a true sagitally focusing system

replace by a multichannel supermirror device

Concluding remarks

Strong points

- deterministic behavior, sharp imaging
- almost rectangular reflection profiles
- absence of 2nd order contamination (Si, Ge, diamond)
- high transparence if Si (multicrystal alignments)

Caveats

- needs precise manufacturing/alignment
- reveals irregularities of samples (sample assemblies)
- aberrations visible in high-resolution setups
- silicon cutting issues