Anisotropy of magnetic response in high-temperature superconductors

Anisotropy of magnetic response in high-temperature superconductors

Alexandre IVANOV

Institut Laue-Langevin Grenoble, France

«Conventional» superconductors:

model (theory) BCSNEUTRONS
FOR SCIENCE1957: J.Bardeen, L.Cooper, R.Schriefferprincipal ingredient – Cooper pairs (L.Cooper, 1956)attraction of two electronsexchanging a virtual phononorelectron-phonon interactionrelation of spectral and superconducting characteristics

$$k_B T_C = 1.14 \ \hbar \omega_D \cdot \exp\left(-\frac{1}{\lambda - \mu^*}\right)$$

$$N_A \langle I^2 \rangle \quad el = nhon$$

$$\lambda = \frac{N_{el}(y)}{\langle M\omega^2 \rangle} = \frac{ei}{ion-ion}$$

SC-gap function

$$\Delta_{k} = -\sum_{k'} \frac{V_{kk'} \Delta_{k'}}{2\sqrt{\varepsilon_{k'}^{2} + \Delta_{k'}^{2}}}$$

BCS: V < 0, $\Delta = const > 0$

retardation effect helps reducing the Coulomb repulsion

electron pairs in BCS have zero spin and orbital momenta (the most symmetric state): L=0, S=0

Cuprates: complex oxides with a layered crystal structure

The layers CuO₂ are responsible for the main SC properties while the other layers stabilize the crystal structure and serve charge "reservoirs"

 $YBa_2Cu_3O_{6+x} =$

Orthorhombic structures: elastic domains

Preparing single-domain (detwinned) samples

As grown crystals are first annealed in appropriate atmosphere in order to reach the desired doping content

Then crystals, one after another are compressed with a uniaxial mechanical force (~0.5 kbar) applied along <100> ("a" or "b") at high temperature in the tetragonal phase while keeping a controlled atmosphere around the crystals

then cooled through the tetra-ortho transition keeping the force

and at last the force is released at ambient temperature

appropriate sample size – several cubic mm not enough for INS – composed samples from individually characterized crystals

Preparing single-domain (detwinned) samples neutron beam characterization

Objects for research: single crystals

good to have ~1 cm³ In the great majority of cases it is not possible in particular for new materials such as HTSC

«composed» samples: 0.06-0.45 см³,

quality (mosaic spread) : 1° - 2°

Experimental equipment

"On the-floor" distances – meters divergences - degrees

weight of the moving modules – up to tons precision of positioning – 0.01 degree

neutron polarization analysis

Top view

Dispersion of the resonance intensity

incommensurability of the signal below T_c

cannot be related to pinned "stripes"

more detailed analysis on detwinned samples

Magnetic resonance in cuprates

anisotropy in the plane CuO_2 and dispersion of the resonance intensity

Anisotropy of the forms "X" and "Y" (below and above Tc)

nematic electron correlations: 2D

anisotropy in the plane CuO_2 and the resonance dispersion

Magnetic resonance in cuprates

anisotropy in the plane increases at lower energies and with reducing doping "x" in YBa₂Cu₃O_{6+x}

Magnetic resonance in cuprates

Fe-based SC

(from 2008 – pnictides, then selenides) resemble cuprates: layered structures, Magnetic AFM layers, several structure types, phase diagrams alike

Anisotropy of the magnetic resonance in the 111 family Na(FeCo)As

lifting of the orbital degeneration under uniaxial stress

NEUTRONS

FOR SCIENCE

"In-situ" detwinned Ba-122

22 MPa

Released

Stress-free

130

 22 MPa Released

 $\frac{S_1(1,0)-S_2(0,1)}{S_1(1,0)+S_2(0,1)}$

130 140

130

Conclusion

Anisotropy of magnetic fluctuations is well developed in the orthorhombic phases of copper- and iron-based unconventional superconductors

Anisotropy of magnetic fluctuations is supportive of the theories generating nematic order in the 2D electronic liquid

the "broken symmetry" low-temperature phases correspond to reduced rotational and not translational symmetry

ВТСП на основе железа

(с 2008 года – пниктиды, и затем - селениды)

во многом похожи на купраты:

структуры со слоями, есть магнитно-активные слои с АFM взаимодействием несколько типов структур, подобные фазовые диаграммы

много-щелевые

Фазовые диаграммы

Общее: СП возникает при зарядовом допировании (электронном или дырочном) плоскостей CuO₂

Полученные данные: пример магнитное рассеяние в S-замещенных селенидах

Изменение типа спаривания в одном семействе K_xFe₂(Se_{1-z}S_z) при легировании серой – малые изменения Tc, подобные свойства

По мере увеличения содержания серы магнитный резонанс возникающий, по имеющимся преставлениям, в симметрии S⁺⁻, прогрессивно исчезает и замещается «нерезонансным» поведением, характерным для симметрии S⁺⁺. Мы интерпретируем это как плавный переход от одного типа спаривания к другому.

High-Temperature Superconductors (HTSC) from 1986: Tc > 30 K

HTSCCu-based:oxidesHTSCFe-based:pnictides and chalcogenides

«Unconventional» superconductors ceramics materials

different from

«conventional», «usual» superconductors known earlier in metals and intermetallics

new mechanism of superconductivity