

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Магнитно-электронное фазовое разделение выше T_c в ${}^{154}Sm_{0.32}Pr_{0.18}Sr_{0.5}MnO_3$ манганите.

А.И. Курбаков¹, <u>В.А. Рыжов</u>¹, В.В. Рунов¹, В.В. Дериглазов¹, С. Martin², А. Maignan²

¹ Петербургский институт ядерной физики НИЦ «Курчатовский институт» ²Laboratoire CRISMAT, UMR 6508 ISMRA et Universite de Caen, Boulevard de Marechal Juin, 14050 Caen, France

Проблемы и задачи

Эффект КМС в манганитах Ln_{1-x}A_xMnO₃ (Ln=La,Pr,Sm; A=Ca,Sr...) со структурой перовскита наблюдается вблизи П-ФМ перехода в составах как с изоляторным (И), так и металлическим (М) основными состояниями.

Магнитное поле может изменить или фазовое равновесие или T_C. Огромное изменение полем R предполагает присутствие в манганитах проводящей M фазы.

М фаза, ФМ кластеры с М свойствами в П-И матрице образуется выше T_C в результате магнитно-электронного фазового разделения (МЭФР). Концентрация кластеров зависит от x и T.

При ее приближении к перколяционному происходит И-М переход.

Связь МЭФР с П-ФМ переходом и структурными особенностями еще плохо изучена, фактически нет описания П-ФМ и И-М переходов. Нет информации о магнитных и геометрических характеристиках кластеров.

Малый относительный объем кластерной фазы создает проблемы с выделением ее вклада из суммарного с матрицей магнитного отклика.

Составы вблизи половинного допирования представляют особый интерес для изучения. В них наблюдаются орбитальное и/или зарядовое упорядочение, сопровождаемое АФ упорядочением, которые могут драматически влиять на МЭФР.

Исследовался: поликристаллический КМС манганит $Sm_{0.32}Pr_{0.18} Sr_{0.5}MnO_3$ $(Sm^{3+}(Pr^{3+}) \rightarrow Sr^{2+}, смешанно-валентное состояние, большая ширина зоны W).$ Основная цель работы – выяснение эффекта доп. изовалентного замещения Sm $\rightarrow Pr$ на МЭФР. Это замещение вносит дополнительный беспорядок по сравнению с ранее исследованным нами $Sm_{0.5}Sr_{0.5}MnO_3$ [PRB 72 (2005) 184432].

Fig.1. *T*-dependence of SPSMO resistance at H=0; 7T in direct and reverse T –scan. Red line presents fit of $\rho(T)$ by polaron model. Insert presents ρ in other coordinates.

Fig.2.*T*-dependences of SSMO resistance at H = 0; 7 T. Red line presents fit of $\rho(T)$ by polaron model. Insert presents $\rho(T)$ in other coordinates. [Kurbakov et al. PRB 72, 184432 (2005)]

Fig.3. $Sm_{0.32}Pr_{0.18}Sr_{0.5}MnO_3$. *T*-dependences of M and MR = {[R(H) - R(0)]/R(0)}*100% (insert) in SPSMO.

Fig.4. Sm_{0.5}Sr_{0.5}MnO₃. *T*-dependence of M. [Kurbakov et al. PRB 72, 184432 (2005)].

Fig.5. *T*-dependences of interatomic distances (a),(b); (d),(e); moments of different magnetic phases (c), (f); and fractions of structural phases (g), (h). [PRB 72 (2005) 184432; Поверхность №6 (2015) 5].. $Sm_{0.32}Pr_{0.18}Sr_{0.5}MnO_3$: I –*Pbnm*; II -*P2*₁/*m*; difference in Mn-O distances for two Mn sites is rather small (deviation of monoclinic angle from 90⁰ is small) and we present here average data. $Sm_{0.5}Sr_{0.5}MnO_3$ (both phases exhibit *Pbnm* space group). In phase I JT distortions are close to that in pure FM $Sm_{0.55}Sr_{0.45}MnO_3$ [Kurbakov et al. Fiz.Tv.Tela 46 (2004) 1650].

(C)

Fig.6. *T*-dependences of unit cell parameters (a),(b) for $Sm_{0.5}Sr_{0.5}MnO_3$ (both phases exhibit *Pbnm* space group) and $Sm_{0.32}Pr_{0.18}Sr_{0.5}MnO_3$ (I –*Pbnm*; II -*P2*₁/*m*). Panel (c) presents the data on *polarization* for both samples and *small angle polarized neutrons scattering* (SAPNS) for the SPSMO.

 M_2 нелинейного отклика в продольной геометрии: $H(t) = H + h \cos \alpha t$ • $M_2 \propto h^2$, $M_2(\alpha, H) = \chi_2(\alpha, H) h^2$, χ_2 – восприимчивость 2-го порядка, имеет статический предел

• $\chi_2(0,H) = \text{Re}\chi_2(0,H) = (1/2)\partial^2 M(H)/\partial H^2$, $\text{Im}\chi_2(0,H) = 0$. В изотропном случае:

 $\chi_2(\omega) = \Gamma(-i2\omega + \Gamma)^{-1}\chi_2(0) - i\omega(\partial\Gamma/\partial H)\{(-i2\omega + \Gamma)(-i\omega + \Gamma)\}^{-1}\chi_1(0).$ (1)

Первый член $\chi_2(\omega)$ – следствие нелинейности M(H). Он дает основной вклад в Re M_2 . Второй член – из-за влияния H(t) на релаксацию, дает основной вклад в Im M_2 . Его знак противоположен знаку Re M_2 .

• Из симметрийных свойств M_2 появление *H*-гистерезиса, с $M_2 \neq 0$ при H = 0 -следствие появление спонтанного ФМ момента в образце.

<u>М2</u> в 3D изотропном ферромагнетике выше <u>Т</u>_C

Re $M_2 \propto H\tau^{-14/3}$ – линейно от *H* выше T_C в режиме слабого поля ($g\mu H < \Omega(\tau) = kT_C\tau^{5/3}$). *Нелинейное поведение (с экстремумом в пределах развертки H*, положение которого зависит от $\tau = (T - T_C)/T_C$) можно ожидать вблизи T_C при переходе к режиму сильного поля. **Im** $M_2 \propto H\tau^{-19/6}$ ·**G**(*H*, τ), **G** – известная слабо меняющаяся функция (вклад спиндиффузионной моды).

<u>М</u>₂ для ансамбля невзаимодействующих ФМ кластеров с большим моментом ReM₂ ∝ $\partial^2 M(H)/\partial H^2$ с экстремумом в слабом H. ImM₂ ∝ ($\partial \Gamma/\partial H$)($\partial M(H)/\partial H$) с экстремумом в слабом H и противоположным ReM₂ знаком.

Режим поведения ФМ кластеров (суперпарамагнитный (SPM)/ блокировки – с динамическим *Н*-гистерезисом) зависит от величины E_{an}/kT ($E_{an} = Kv, K - эффективная константа анизотропии, <math>v$ – средний объем кластеров, k – постоянная Больцмана).

Fig.9. Phase components of second harmonic of magnetization, M_2 , of NLR as functions of the steady field H at some T: (1) for SPSMO ($T^* > 307K > T_C \sim 160$ K; $T_{coal} \sim 280$ K) - panel (a); (2) for SSMO ($T^* \sim 312K > T_C \sim 110K > T_{IM} \sim 54K$; $T_{coal} \sim 180$ K) – panel (b). Concentrations of clusters become close at T of depolarization beginning. M_2 signal from cluster subsystem in critical region of matrix P-FM transition is too large and masks matrix signal.

Fig.10. *T*-dependences of M_2 -response parameters for **SPSMO** (left panel) and **SSMO** (right panel) samples. **SmPrSrMnO**. In left panel part (a) shows values of M_2 in extremes, M_{ext} ; insert in (a) presents positions of extreme, H_{ext} , and "coercive force" H_C ; Part (b) shows cross-sections of Re $M_2(H,T)$ at H = 15; 200 Oe, fit of the latter by scaling law; inset displays value of Re(Im) M_2 at H=0. **SmSrMnO**. Right panel presents Re M_2 value in extreme, its fit and Re $M_2(H=0)$ characterizing *H*-hysteresis; insert shows positions of extreme, H_{max} and "coercive force" H_C in Re M_2 .

Description of SPM clusters magnetic dynamics is based on Gilbert stochastic equation (it is analog of Lanzheven diffused equation) [J. L. Garcia-Palacios, Adv. Chem. Phys. **112**, **1** (2007)]:

$$\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}t} = \gamma \mathbf{m} \times \left[\mathbf{B}_{eff}(t) + \mathbf{b}_{fl}(t) - (\gamma m)^{-1} \alpha \frac{\mathrm{d}\mathbf{m}}{\mathrm{d}t} \right]$$

Here **m** –cluster magnetic moment, $\mathbf{B}_{eff} = \partial V / \partial \mathbf{m}$ is effective magnetic field, V(t) –magnetic potential, \mathbf{b}_{fl} is a weak fluctuating magnetic field.

Kinetics of FM cluster ensemble is obeyed to Fokker-Planck equation [S.V. Titov et al. PRB 82, 100413(R) (2010)]: $\partial W = \beta$ (3)

$$2\tau_N \frac{\partial W}{\partial t} = \frac{\beta}{\alpha} \mathbf{u} \cdot (\nabla V \times \nabla W) + \nabla (\nabla V + \beta W \nabla V)$$
⁽³⁾

The first term in right part of (3) describes a precession. The second term describes a rotational diffusion of unit vector $\mathbf{u} = \mathbf{M}_s / M$ of magnetization \mathbf{M}_s and is responsible for thermal relaxation. Here W – nonequilibrium distribution function of probability density for directions $\mathbf{u} = \mathbf{M}_s / M$; $\nabla = \partial / \partial \mathbf{u} - \partial \mathbf{u}$ gradient operator; $\beta = v / k_B T$, where v – cluster volume, k_B - Boltzmann constant, T – temperature.

diffusion relaxation time is taken in form of Landau-Lifshitz $\tau_N = \tau_0 / \alpha$, where α – damping factor and

 $\tau_{o} = \beta M_{s}/2\gamma (\gamma - \text{gyromagnetic ratio}).$

 τ_N is the characteristic time of diffusion in absense of potential.

Magnetic potential V is usually implied uniaxial [H. El Mrabti et al. J. Appl. Phys. 110, 023901 (2011)]:

$$\beta V = \sigma \sin^2 \vartheta - \xi_H \mathbf{u} \cdot \frac{\mathbf{H}}{H} - \xi_h \mathbf{u} \cdot \frac{\mathbf{h}}{h} \cos \omega t, \qquad (4)$$

Here $\xi_H = \beta M_s H$ and $\xi_h = \beta M_s h$; **H** and **h** – steady and AC magnetic fields accordingly. The first term in(4) – anisotropy energy with $\sigma = \beta K_a$, where $\beta = v/k_B T$, K_a – effective constant of anisotropy, including magneto-crystal anisotropy, form anisotropy and surface one; ϑ - angle between anisotropy axis and magnetization, second and third terms – Zeeman energy. Decision for distribution function:

$$W(t,\vartheta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm}(t) Y_{lm}(\vartheta,\varphi)$$

Fig.11. Fit of SPSMO compound M_2 -response by decision of Fokker-Plank equation. T = 306 К. Powerlaw distribution of clusters was used. Since a presence of a weak *H*-hysteresis the curves (Re(Im) M_{2dir} + Re(Im) M_{2rev})/2 were fitted. The dynamical parameters can be found by this approach only. Расчеты были выполнены в СПбПУ СКЦ «Политехнический».

Заключение

- I. ND сходная эволюция структуры в SmSrMnO и SmPrSmMnO образцах, ФМ и АФ упорядочение в разных структурных фазах. Похожий сценарий наблюдается и в Pr_{0.5}Sr_{0.5}MnO₃ [Damay et al. JMMM 184 (1998) 71].
- В SmPrSmMnO в большей части кристаллитов структурный переход идет полностью. В оставшихся кристаллитах с фазой I при *T* ~ 170 К происходит перколяционный И-М переход → дальний ФМ порядок → проявляется в ND при *T* ~ 170 К. И-М переход во всем образце отсутствует из-за малого количества фазы I (< 20%).
- II. *R*(*T*) SmPrSmMnO свойство КМС, нет И-М перехода; КМС наблюдается, по-видимому, за счет метамагнитного перехода («плавления» АФ фазы) под действием поля в кристаллитах с фазой II. SmSrMnO свойство КМС, И-М переход.
- III. n-поляризация(T) разительно отличается: в SmPrSmMnO ее начало при $T \approx 307$ K; в SmSrMnO – при T < 120 K.
- IV. $M_2(T,H)$ образование ФМ кластеров начинается при $T^* > 310$ К в обоих составах. В SmPrSrMnO их концентрация, $C_{\kappa\pi}$ *достаточна для п-деполяризации уже при T* ~ 307 K. В SmSrMnO при T ~ 300 К $C_{\kappa\pi}$ ~ на 2 порядка ниже, чем в SmPrSmMnO. $C_{\kappa\pi}$ увеличивается на 2 порядка только при T ~ 120 К < T_C ниже которой начинается п-деполяризация.
- Вносимый изовалентным замещением сравнитеьно слабый дополнительный беспорядок, способствует образованию ФМ кластеров.
- V. Уравнение Фоккера-Планка \rightarrow анализ $M_2(H,T)$ отклика в области его безгистерезисного поведения (суперпарамагнитный режим поведения кластеров) + п-деполяризация нейтронов \rightarrow определение геометрических и динамических параметров кластеров. SmPrSrMnO: анализ указывает на степенную функцию распределения размеров кластеров с показателем 2.55 (фрактальная размерность в кластерной подсистеме), что нуждается в дальнейшей проверке.

Спасибо за внимание!

Mixed-valence manganites

• The doped manganites $La_{1-x}A_{x}MnO_{3}$ consist of a 3D network of corner-sharing MnO_{6} octahedra located at the nodes of a simple cubic lattice with La(A) in a center of unit cell [M. Pissas et al. Phys. Rev. B **72**, 064425 (2005)].

• The CMR is largest just near the ferromagnetic transition temperature.

Jahn-Teller provides distortions of MnO_6 octahedra, which effect essentially on structure, probability of e_g -electron hopping as well as create prerequisites for orbital ordering formation.

Jahn-Teller Polarons

 $x \text{ Mn}^{4+} + (1-x) \text{ Mn}^{3+}$

Электронная структура ионов Мп

Field splitting of the five-fold degenerate atomic 3*d* levels into lower *t* and higher *e* levels. The particular Jahn-Teller distortion sketched in the figure further lifts each degeneracy as shown. $J_{CF} \sim 2 \text{ eV}, J_{H} \sim 2 - 3 \text{ eV}, J_{JT} \sim 0.5 \text{ eV}, t \sim 0.3 \text{ eV}.$

Fig.1. Phase diagrams of $Sm_{I-x}Sr_xMnO_3$: FMM(I), ferromagnetic metal(insulator); CO, charge-ordered insulator; AFMI - antiferromagnetic insulator phase with no long-range JT order. [C. Martin et al. PRB 60 (1999) 12191].

In absence of external magnetic field cluster moments are oriented along anisotropy axis, the moment of ensemble being $\mathbf{M} = 0$. To reach thermal equilibrium at field turning on, magnetic moments of part of ensemble should change their orientation on angle π . The latter is required the transition across barrier (Fig.7) under action of thermal fluctuation. The relaxation time is described by Neel-Brown expression:

 $\tau = \tau_0 \exp(\Delta E_B / kT), \qquad \Delta E_B = K_a v \qquad (3)$

Here K_a is effective anisotropy constant, v – cluster volume, $\tau_0 \sim 10^{-10}$ s. **Transition from SPM regime to blocking one,** which is characterized by *H*-hysteresis arising in M(H) μ M₂(*H*) is determined by condition: $\tau_{\text{meas}} \approx \tau$, from which the **blocking temperature** can be found:

(4)

 $T_{R} \approx K_{a} v / [k \cdot \ln(\tau_{\text{meas}} / \tau_{0})]$

Fig.8. Magnetic hysteresis: (a) origin and phenomenology of hysteresis. The insets are energy-landscape equivalents of the magnetization

Inserts in **Fig. 8** show schematically a change of barrier for FM clusters in two-well potential in presence of external magnetic field:

 $\Delta E_B = K_a v + \mu H(t).$ (5) Thus, relaxation time (3) will be function of external field, and in M₂(H,T) will appear high harmonics provided by this parametrics.

From expression (4) is clear the dependence of blocking temperature T_B on cluster dimension, and *H*-hysteresis of $M_2(H)$ response on frequency of *H*-scan, F_{sc} , of steady field *H*. For the latter, in case of signal accumulation at periodic *H*-scan the time of measurement is $\tau_{meas} = 1/F_{sc}$.

Fig.12. Fit of SPSMP compound Re M_2 -response by Eq. 1 in static limit with *M* described Lanzheven function + linear on *H* response of matrix. T = 306.9K. $\mu \sim 1.1 \cdot 10^5 \mu_B$, $N_{cl} \sim 1.5 \cdot 10^{14}$ 1/g.

Two band model.

Spectral density ($E_{JT} = -0.5 \text{ eV}$, D = 1.2 eV, U = 5 eV, $J_F = 2 \text{ meV}$) : (a) x = 0.1, T = 0 (FI), (b) x = 0.3, T = 180 K ($< T_C = 240 \text{ K}$) (FM), occupied band states are shown shaded, (c) T = 350 K (PI). Vertical line is the *l* polaron level.

FIG. 1 (color online). Real space electronic distribution obtained from simulations on a 16³ cube. Magenta (darkest) denotes hole clumps with occupied *b* electrons, white (lightest) denotes hole clumps with no *b* electrons, cyan (2nd lightest) denote singleton holes, and light blue (2nd darkest) represents regions with ℓ polarons. Left: Isolated clumps with occupied *b* electrons (*b*-electron puddles). Right: Larger doping; percolating clumps. Inset: "macroscopic phase separation" absence of long range Coulomb interaction ($V_0 = 0.0$).

V.B. Shenoy et al., PRL 98, 066602 (2007)

FIG. 4. Schematic representation of theories for manganites. (a) is a simple "double exchange" scenario, without phase competition. (b) is based on a gas of polarons above the Curie temperature T_C , also without phase competition. In (c), a phase-separated state above the ordering temperatures is sketched.