Магнитная динамика в мультиферроике TbFe₃(BO₃)₄

Авторы работы: **А.К. Овсяников**, И.В. Голосовский, М. Boehm, L-P. Regnault, А.А. Мухин

Мотивация

Для приложений современной электроники важно управление и контроль над магнитными и электрическими свойствами материалов. Перспективным направлением для решения этой задачи является использование мультиферроиков - материалов обладающих магнитоэлектрическим эффектом.

1. Семейство RM₃(BO₃)₄ (где R=Y, La-Lu; M=Al,Fe):

- HoAl₃(BO₃)₄ значение поляризации 3600 мкКл/м² при поле 70 кЭ (рекорд на 2012 год)
- SmFe₃(BO₃)₄ гигантский магнитоэлектрический эффект, диэлектрическая постоянная возрастает в 3 раза при понижении температуры от T_N = 40 К до 4.2 К

2. Объекты исследований – система Nd_{1-x}Tb_xFe₃(¹¹BO₃)₄.

NdFe₃(BO₃)₄ обладает магнитной структурой типа «легкая плоскость», а TbFe₃(BO₃)₄ - «легкая ось».

N. I. Leonyuk, V.V. Maltsev, E.A. Volkova et al., Opt.Mater. 30, 161 (2007). А.А. Мухин и др. Письма в ЖЭТФ, 93,305. (2011).

При комнатной температуре структура TbFe₃(BO₃)₄ соответствует группе *R32*.

 $T_s = 192$ К - структурный фазовый переход к пространственной группе Р3₁ 21.

 $T_N = 41$ К - соразмерная магнитная структуру с вектором распространения $k = [0 \ 0 \ 1/2]$.

Ионы Fe³⁺ занимают позиции За и 6с (красный и розовой соответственно) образуют цепочки расположенные вдоль оси с. Ионы Tb³⁺ занимают позицию За, обозначены зелёным цветом.

Магнитные моменты Fe³⁺ и Tb³⁺ противоположно направлены и лежат параллельно оси с

Эксперименты по неупругому рассеянию нейтронов выполнены в институте Лауэ-Ланжевена на приборе IN22. Температуры измерений T=10K и T=32K , направления q=[0 1 l], q=[0 k 0.5].

Эксперимент

Карты интенсивностей измеренных при T=10 К для направлений q=[0 1 l], q=[0 k 0.5].

Теория спиновых волн

1. Запишем Гамильтониан системы:

$$H = -\sum_{ij} J_{ij} \cdot \vec{S}_i \vec{S}_j$$

где *S_i* – векторный оператор спина, *J_{ij}* – обменные интегралы. Положительный(отрицательный) знак обмена *J_{ij}* соответствует антиферромагнитному (ферромагнитному) обменному взаимодействию.

2. Введём операторы повышения и понижения полного спина на единицу $S^+ = S_x + iS_y$ и $S^- = S_x - iS_y$, ось квантования z направлена вдоль направления спина.

3. Подход Гольштейна-Примакова для спиновых операторов:

$$\begin{cases} S_i^+(r_i) = \sqrt{2S}a_i = \sqrt{2S}b_i^+ \\ S_i^-(r_i) = \sqrt{2S}a_i^+ = \sqrt{2S}b_i \\ S_i^z = S - a_i^+a_i = -S + b_i^+b_i \end{cases}$$

где a_i, b_i (a_i^+, b_i^+)операторы рождения (уничтожения) спиновой волны в ферромагнитных подрешетках с противоположным направлением спина; *i* - номер кристаллической подрешетки.

4. Переход к операторам $a_{q,i}$, $b_{q,i}$ описывающие спиновую волну с волновым вектором q.

$$a_{q,i} = \frac{1}{\sqrt{N}} \sum_{r_i} a_i(r_i) e^{-iqr_i} \qquad b_{q,i} = \frac{1}{\sqrt{N}} \sum_{r_i} b_i(r_i) e^{iqr_i}$$

где N – число элементарны ячеек.

T. Holstein, H. Primakoff. Phys. rev. 1940; 1098(58).

Теория спиновых волн

Гамильтониан в виде квадратичной формы по бозонным операторам

$$\widehat{H} = \sum_{q} \sum_{ij} A_{ij}(q) (a_{q,i}^{+} a_{q,j} + b_{q,i}^{+} b_{q,j}) + \sum_{ij} [B_{ij}(q) a_{q,i} b_{q,j} + h.c.]$$

5. Для нахождения спектра спиновых волн используется уравнение Гейзенберга для операторов "рождения" и "уничтожения" и получается система линейных уравнений вида:

$$\omega^2(q) = (A+B)(A-B)$$

где А и В – матрицы, зависящие от обменных параметров, значений спинов и взаимном расположении взаимодействующих атомов.

6. В более сложных случаях в расчетах возможно учитывать не гейзенберговский обмен, взаимодействие Дзялошинского-Мория, анизотропию, внешнее поле и т.д.

$$J = \begin{bmatrix} J_x & 0 & 0 \\ 0 & J_y & 0 \\ 0 & 0 & J_z \end{bmatrix} \qquad D = \begin{bmatrix} 0 & D_z & -D_y \\ -D_z & 0 & D_x \\ D_y & -D_x & 0 \end{bmatrix} \qquad A_{easy-plane} = \begin{bmatrix} -A_x & 0 & 0 \\ 0 & -A_x & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad B_{mag} = \begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix}$$

Красным и розовым цветом обозначены атомы Fe, зелёный – Tb, желтый – B, синий – O.

Моделирование

Обозначение обменных параметров и участвующие атомы	Расстояние (Å)
Ј ₁ Fe-Fe, внутри цепочечное	3.185
J ₂ Fe-Fe, межцепочечное, ближайшие соседи	4.409
Ј ₃ Fe-Tb, ближайшие соседи	3.788

Моделирование

Красным и розовым цветом обозначены атомы Fe, зелёный – Tb.

Номер		Расстояние	Координацион
координационной	Обозначение обменных	(Å)	ное число Z
сферы	параметров и		
	участвующие атомы		
1	J ₁ Fe-Fe, внутри	3.185	2
	цепочечное		
2	J ₃ Fe-Tb, ближайшие	3.788	6
	соседи		
3	Ј ₄ Fe-Tb, в плоскости	4.312	3
4	Ј ₂ Fe-Fe, межцепочечное,	4.409	2
	ближайшие соседи		
5	Ј ₅ Fe-Fe, межцепочечное в	4.870	4
	плоскости		
6	Ј ₆ Fe-Fe внутри	5.424	2
	цепочечное, следующие		
	за ближайшими		
7	J ₇ Fe-Tb,	5.796	3
8	Ј ₈ Fe-Fe межцепочечное,	6.091	6
	следующие за		
	ближайшими		

1. Запишем Гамильтониан системы:

$$H = -\sum_{Fe-Fe} J_{ij} \cdot \vec{S}_i \vec{S}_j - \sum_{Fe-Tb} J_{mn} \cdot \vec{S}_m \vec{s}_n$$

Гамильтониан в виде квадратичной формы по бозонным операторам

$$\widehat{H} = \sum_{q} \sum_{ij} A_{ij}(q) (a_{q,i}^{+} a_{q,j} + b_{q,i}^{+} b_{q,j}) + \sum_{ij} [B_{ij}(q) a_{q,i} b_{q,j} + h.c.]$$

В магнитной ячейки находится 24 магнитных атома, что даёт 24 дисперсионные кривые, а матрицы А и В имеют размерность 48х48.

Измерения выполнены при температурах T=10K и T=32K, следовательно в гамильтониане системы требуется использовать средние значения спина Fe³⁺ и полного углового момента Tb³⁺ - <S_{Fe}> и <s_{Tb}>, которые зависят от температуры.

$$m_{Fe} = g_s \mu_\beta \langle S_{Fe} \rangle$$
 $m_{Tb} = \frac{g_j}{(g_j - 1)} \mu_\beta \langle s_{Tb} \rangle$

где m_{Fe} и m_{Tb} – магнитные моменты Fe и Tb, соответственно; $g_s = 2$ – спиновый g-фактор Fe; $g_j = \frac{3}{2}$ – фактор Ланде; μ_{β} - магнетон Бора. Для температуры T=10K средние значения составляют <S_{Fe}>≈2.2 и < s_{Tb} >≈2.83.

C. Ritter et al., J. Phys.: Condens. Matter 19 (2007)

Эксперименты по неупругому рассеянию нейтронов выполнены в институте Лауэ-Ланжевена на приборе IN22. Температуры измерений T=10K и T=32K , направления q=[0 1 l], q=[0 k 0.5].

Результаты и обсуждение

Эксперимент и моделирование дисперсионных кривых при T=10 К для направлений q=[0 1 l], q=[0 k 0.5].

M. N. Popova et al., J. Phys.: Condens. Matter 24 (2012)

Обменные	Оптическая	Нейтронная	Нейтронная
параметры	спектроскопия	спектроскопия,	спектроскопия,
		10K	32 K
J ₁ Fe-Fe, внутри	0.57	0.73	0.76
цепочечное			
J ₃ Fe-Tb,	-0.022	-0.022	-0.022
ближайшие			
соседи			
J ₄ Fe-Tb, в	-	0.05	0.05
плоскости			
J ₂ Fe-Fe,	0.14	0.17	0.17
межцепочечное,			
ближайшие			
соседи			
J ₅ Fe-Fe,	-	0.14	0.15
межцепочечное			
в плоскости			
Ј ₆ Fe-Fe внутри	-	-0.05	-0.07
цепочечное,			
следующие за			
ближайшими			
J ₇ Fe-Tb,	-	-	-
J ₈ Fe-Fe	-	0.14	0.15
межцепочечное,			
следующие за			
ближайшими			

Ошибка расчетных обменных параметров не превышает 0.02 мэВ

Результаты и обсуждение

В TbFe3(BO3)4 ион Tb в основном состоянии является квазидублетом - два близко расположенных синглетных уровня. При этом наблюдается расщепление основного состояния Δ_{тb}=3.9 мэВ в эффективном магнитном поле B=3.9 Tл.

M. N. Popova et al., J. Phys.: Condens. Matter 24 (2012)

Расчётная величина энергетической щели при q=0 составляет Δ=1.81 мэВ, что хорошо согласуется с данными полученными методом квазиоптической террагерцовой спектроскопии, где при q=0 энергия резонансной моды составляет Δ=1.85 мэВ при T=10K.

A. A. Mukhin et al., Journal of Experimental and Theoretical Physics, 2011, Vol. 113, No. 1,

Эксперимент и моделирование дисперсионных кривых при T=10 К для направлений q=[0 1 l], q=[0 k 0.5].

Результаты и обсуждение

спектроскопия

 $TbFe_3(BO_3)_4$

Сумма обменных взаимодействий внутри цепочки и между цепочками в соседни	іх слоях - J1, J2 и J8
ферромагнитно упорядочивает моменты в плоскости а-b несмотря на антиферро	магнитный обмен J5

Лёгкоплоскостная магнитная структура NdFe₃(BO₃)₄, красным цветом обозначены атомы Fe, зелёным – Nd. Пространственная группа R32, T_N=30K, k=[0 0 3/2].

M. Janoschek et al. PRB, 81, 094429, 2010.

C. Ritter et al., J. Phys.: Condens. Matter 19 (2007)

красным и розовым цветом обозначены

группа РЗ₁21, Т_N=41К, k=[0 0 1/2].

атомы Fe, зелёным – Tb. Пространственная

Сравнение $NdFe_3(BO_3)_4$ и $TbFe_3(BO_3)_4$

	J1 Fe-Fe,	J2 Fe-Fe,	J3 Fe-R,	J4 Fe-R,	J5 Fe-Fe,	J6 Fe-Fe,	J8 Fe-Fe,
	мэВ	мэВ	мэВ	мэВ	мэВ	мэВ	мэВ
Оптическая	0.57	0.14	-0.022	-	-	-	-
спектроскопия							
TbFe ₃ (BO ₃) ₄							
Оптическая	0.54	0.16	0.04	-	-	-	-
спектроскопия							
NdFe ₃ (BO ₃) ₄							
Нейтронная	0.73	0.17	-0.022	0.05	0.14	-0.05	0.14
спектроскопия							
TbFe ₃ (BO ₃) ₄							
Нейтронная	0.71	0.17	0.04	-0.05	0.16	-0.02	0.14
спектроскопия							
NdFe ₃ (BO ₃) ₄							

В обоих соединениях TbFe₃(BO₃)₄ и NdFe₃(BO₃)₄ обмены внутри подсистемы Fe одинаковые в пределах ошибки измерений и не влияют на лёгкоосный или лёгкоплоскостной тип упорядочения.

В лёгкоосном TbFe₃(BO₃)₄ ион Tb является изинговским ионом с компонентами g фактора $g_x = g_y = 0$ и $g_z = 17,5$. В лёгкоплоскостном NdFe₃(BO₃)₄ ион компоненты g фактора Nd соответствуют $g_x = g_y = 2,4$ и $g_z = 0,9$. Таким образом анизотропия g фактора редкоземельного иона определяет тип упорядочения в редкоземельной подсистеме, которая через обмен Fe-R упорядочивает железную подсистему.

M. N. Popova et al., J. Phys.: Condens. Matter 24 (2012)

M. N. Popova et al., PRB, 75, 224435 (2007).

Заключение

Проведены эксперименты по неупругому рассеянию нейтронов, предложена модель описывающая дисперсионные зависимости в данном соединении, рассчитаны величины обменных взаимодействий.

Показано, что определяющий вклад в энергию дают только четыре обменных взаимодействия внутри подсистемы железа, при этом за счет конкуренции этих обменов магнитные моменты железа ферромагнитно упорядочиваются в плоскости a-b несмотря на наличие антиферромагнитного обмена между ионами.

Определяющую роль в формировании типа магнитной структурой «легкая плоскость» или «легкая ось» играет анизотропия редкоземельный подсистемы.

Благодарю за внимание