

Школа Поляризованных Нейтронов 2016

Магнитно-электронное фазовое разделение выше T_c в $Sm_{0.32}Pr_{0.18}Sr_{0.5}MnO_3$ манганите.

А.И. Курбаков¹, <u>В.А. Рыжов¹</u>, В.В. Рунов¹, В.В. Дериглазов¹, М.И. Арефьев¹, С. Martin², А. Maignan²

¹Петербургский Институт Ядерной Физики, НИЦ"Курчатовский Институт", Орлова Роща, Гатчина, 188300, Россия ²Laboratoire CRISMAT, UMR 6508 ISMRA et Universite de Caen, Boulevard de Marechal Juin, 14050 Caen, France

Mixed-valence manganites

• The doped manganites $La_{1-x}A_{x}MnO_{3}$ consist of a 3D network of corner-sharing MnO_{6} octahedra located at the nodes of a simple cubic lattice with La(A) in a center of unit cell [M. Pissas et al. Phys. Rev. B **72**, 064425 (2005)].

• The CMR is largest just near the ferromagnetic transition temperature.

Jahn-Teller provides distortions of MnO_6 octahedra, which effect essentially on structure, probability of e_g -electron hopping as well as create prerequisites for orbital ordering formation.

Jahn-Teller Polarons

 $x \text{ Mn}^{4+} + (1-x) \text{ Mn}^{3+}$

Motivation of magneto-electronic phase separation study

Effect of CMR in $Ln_{1-x}A_xMnO_3$ (Ln=La,Pr,Sm; A=Ca,Sr...) perovskite manganites is observed near P-FM transition, both in compounds with insulator (I) and metallic (M) ground states. Magnetic field can change phase equilibrium or temperature of phase transition. The huge change by field of sample resistance R suggests the presence of conductive M phase in it.

Magneto-electronic phase separaton (*MEPS*) provides origination of FM-ordered clusters with M properties above T_C embedded in P-I matrix \rightarrow heterogeneous magnetic state. **Amount of clusters depends strongly on level of doping**, x. At approaching their concentration to percolation limit I-M phase transition occurs.

So, to insight in physics of manganites one needs to study the details *MEPS and its* connection with *P-FM*, and correlation with structure evolution

The compounds near half doping are of special interest since they exhibit orbital/charge ordering (OO, CO) followed by AFM ordering that can dramatically effect the MEPS. *Compounds under study*

Powdered CMR manganite $Sm_{0.32}Pr_{0.18} Sr_{0.5}MnO_3$ (doping $Sm^{3+} \rightarrow Sr^{2+}$ mixed-valence state, large bandwidth W): main goal of this study is to clarify an effect of isovalent substitution $Sm \rightarrow Pr$ and introduced by it additional disorder on MEPS in comparison with earlier investigated by us $Sm_{0.5}Sr_{0.5}MnO_3$ [PRB 72 (2005) 184432]. • SPSMO: no IMT, MEPS from T*> 307K > T_C~125K; T_{AF-A}~175K; T_{AF-CE}~125K; T_{st}~170K, its structure was studied earlier [Поверхность №6 (2015) 5].

• SSMO: $T_{IM} \sim 54K$, MEPS from T*> 311K > $T_C \sim 110K$; $T_{AF-A} \sim 135K$, $T_{st} \sim 135K$. •Both crystals exhibit CMR and reveal heterogeneous magnetic state consisting of FM metallic clusters embedded in P matrix, which originates above T_C in a result of MEPS.

Fig.1. Phase diagrams of $Sm_{I-x}Sr_xMnO_3$: FMM(I), ferromagnetic metal(insulator); CO, charge-ordered insulator; AFMI - antiferromagnetic insulator phase with no long-range JT order. [C. Martin et al. PRB 60 (1999) 12191].

Fig.3. *T*-dependence of SPSMO resistance at H=0; 7T in direct and reverse T –scan. Red line presents fit of $\rho(T)$ by polaron model. Insert presents ρ in other coordinates.

Fig.4.*T*-dependences of SSMO resistance at H = 0; 7 T. Red line presents fit of $\rho(T)$ by polaron model. Insert presents $\rho(T)$ in other coordinates. [Kurbakov et al. PRB 72, 184432 (2005)]

Fig.5.*T***-dependences of M and MR = {[R(H) -**R(0)]/R(0)}*100% (insert) in SPSMO.

Fig.6.*T***-dependences of M in SSMO** [Kurbakov et al. PRB **72**, 184432 (2005)].

Fig.7. *T*-dependences of interatomic distances (a),(b); (d),(e); moments of different magnetic phases (c), (f); and fractions of structural phases (g), (h) for $\text{Sm}_{0.32}\text{Pr}_{0.18}\text{Sr}_{0.5}\text{MnO}_3$ (I –*Pbnm*; II -*P2*₁/*m*; difference in Mn-O distances for two Mn sites is rather small (deviation of monoclinic angle from 90^o is small) and we present here average data) and $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$ (both phases exhibit *Pbnm* space group). In phase I JT distortions are close to that in pure FM $\text{Sm}_{0.55}\text{Sr}_{0.45}\text{MnO}_3$ [Kurbakov et al. Fiz.Tv.Tela 46 (2004) 1650].

(C)

Fig.8. *T*-dependences of unit cell parameters (a),(b) for $\text{Sm}_{0.32}\text{Pr}_{0.18}\text{Sr}_{0.5}\text{MnO}_3$ (I –*Pbnm*; II -*P2*₁/*m*) and $\text{Sm}_{0.5}\text{Sr}_{0.5}\text{MnO}_3$ (both phases exhibit *Pbnm* space group). Panel (c) presents the data on *polarization* for both samples and *small angle polarized neutrons scattering* (SAPNS) for the former.

Second harmonic of magnetization, M_2 of nonlinear response in longitudinal geometry: parallel steady and ac - harmonic magnetic fields ($H(t) = H + h \cos \alpha t$) •When $M_2 \propto h^2$, $M_2(\omega, H) = \chi_2(\omega, H) h^2$, χ_2 – susceptibility of second order with static limit

• $\chi_2(0,H) = \operatorname{Re}\chi_2(0,H) = (1/2)\partial^2 M(H)/\partial H^2$, $\operatorname{Im}\chi_2(0,H) = 0$. In isotropic case from Blox eq.

 $\chi_2(\omega) = \Gamma(-i2\omega + \Gamma)^{-1}\chi_2(0) - i\omega(\partial\Gamma/\partial H)\{(-i2\omega + \Gamma)(-i\omega + \Gamma)\}^{-1}\chi_1(0).$ (1)

- The first term in $\chi_2(\omega)$ is due to nonlinearity of M(H). It gives main contribution to Re M_2 . Second term is owing to effect of external magnetic field on relaxation processes. It gives main contribution to Im M_2 and its sign is opposite to that of Re M_2 .
- M_2 pseudovector and even function of $h \Rightarrow M_2(H)$ odd in H with $M_2(0) = 0$ in paramagnetic ph ase $(M_2 \propto H \text{ at } H \rightarrow 0)$.
- High sensitivity to appearance of spontaneous magnetization, since in this case $M_2 \neq 0$ at H = 0. Expectations for $\underline{M_2}$ in 3D isotropic ferromagnet above $\underline{T_C}$
- $\omega/\Gamma << 1 \ (\Gamma > 500 \ \overline{\text{Oe}} \ (\text{ESR})) \Rightarrow \text{Re}M_2(\omega, H) \propto \text{Re}\chi_2(0) \propto \overline{\partial}^2 M(H)/\partial H^2$. In weak field regime $(g\mu H < \Omega(\tau) = kT_C \tau^{5/3})$, $\text{Re}M_2 \propto H \tau^{-14/3}$ (crossover to strong field regime at $\tau_{\text{H}} = (g\mu H/kT_C)^{3/5} = 2.2 \cdot 10^{-4} \ \{H = 300 \ \text{Oe}, T_C \sim 186 \ \text{K}\}, T_{\text{H}} \sim T_C + 0.1 \ \text{K}.$
- ImM₂ has more complicated behavior (approximately linear in H) being related to a spin diffusion mode. In the first approximation $\text{Im}M_2 \propto H\tau^{-19/6}$. Thus:
- $\text{Re}M_2 \propto H\tau^{-14/3}$; $\text{Im}M_2 \propto H\tau^{-19/6} \cdot G(H, \tau)$, G is known, weakly changed function.
- *Expectations for* $\underline{M_2}$ of ensemble of non-intaracting FM clusters possessing by large magnetic moment They should exhibit large nonlinearity of M(H) in a weak H due to their large moment. This will provide M_2 signal with extremum in weak field. Above T_C , the latter can be easily distinguished from linear on H response of matrix.
- The regime of magnetic behavior of FM clusters (superparamagnetic (SPM)/ hysteretic with dynamic *H*-hysteresis) will depend on relation of cluster anisotropy energy ($E_{an} = Kv$, *K* effective anisotropy constant, *v* average volume of clusters) and thermal fluctuations.

Fig.9. Phase components of second harmonic of magnetization, M_2 , of NLR as functions of the steady field H at some T: (1) for SPSMO ($T^*>307K > T_C \sim 125K$; $T_{coal} \sim 270$ K) - panel (a); (2) for SSMO ($T^*\sim 312K > T_C \sim 110K > T_{IM} \sim 54K$; $T_{coal} \sim 120$ K) – panel (b). Concentrations of clusters become close at temperatures of depolarization beginning. M_2 signal from cluster subsystem in critical region of matrix P-FM transition is too large and masks matrix signal.

Fig.10. *T*-dependences of M_2 -response parameters for SPSMO (left panel) and SSMO (right panel) compounds. For first sample Panel (a) shows values of M_2 in extremes, M_{ext} ; insert in (a) presents positions of extreme, H_{ext} , and "coercive force" H_C ; Panel (b) shows cross-sections of $\text{Re}M_2(H,T)$ at H=15; 200 Oe, fit of the latter by scaling law; inset displays value of $\text{Re}(\text{Im})M_2$ at H=0. For SSMO, right panel presents $\text{Re}M_2$ value in extreme, its fit and $\text{Re}M_2(H=0)$ characterizing H-hysteresis; in shows positions of extreme, H_{max} and "coercive force" H_C in $\text{Re}M_2$.

Description of SPM clusters magnetic dynamics is based on Gilbert stochastic equation (it is analog of Lanzheven diffused equation) [J. L. Garcia-Palacios, Adv. Chem. Phys. **112**, **1** (2007)]:

$$\frac{\mathrm{d}\mathbf{m}}{\mathrm{d}t} = \gamma \mathbf{m} \times \left[\mathbf{B}_{eff}(t) + \mathbf{b}_{fl}(t) - (\gamma m)^{-1} \alpha \frac{\mathrm{d}\mathbf{m}}{\mathrm{d}t} \right]$$

Here **m** –cluster magnetic moment, $\mathbf{B}_{eff} = \partial V / \partial \mathbf{m}$ is effective magnetic field, V(t) –magnetic potential, \mathbf{b}_{fl} is a weak fluctuating magnetic field.

Kinetics of FM cluster ensemble is obeyed to Fokker-Planck equation [S.V. Titov et al. PRB 82, 100413(R) (2010)]: $\partial W = \beta$

$$2\tau_N \frac{\partial W}{\partial t} = \frac{\beta}{\alpha} \mathbf{u} \cdot (\nabla V \times \nabla W) + \nabla (\nabla V + \beta W \nabla V)$$
⁽³⁾

The first term in right part of (3) describes a precession. The second term describes a rotational diffusion of unit vector $\mathbf{u} = \mathbf{M}_s / M$ of magnetization \mathbf{M}_s and is responsible for thermal relaxation. Here W – nonequilibrium distribution function of probability density for directions $\mathbf{u} = \mathbf{M}_s / M$; $\nabla = \partial / \partial \mathbf{u} - g$ radient operator; $\beta = v / k_B T$, where v – cluster volume, k_B - Boltzmann constant, T – temperature.

diffusion relaxation time is taken in form of Landau-Lifshitz $\tau_N = \tau_0/\alpha$, where α – damping factor and $\tau = \frac{\rho_0}{\rho_0}$

 $\tau_{o} = \beta M_{s}/2\gamma (\gamma - \text{gyromagnetic ratio}).$

 τ_N is the characteristic time of diffusion in absense of potential.

Magnetic potential V is usually implied uniaxial [H. El Mrabti et al. J. Appl. Phys. 110, 023901 (2011)]:

$$\beta V = \sigma \sin^2 \vartheta - \xi_H \mathbf{u} \cdot \frac{\mathbf{H}}{H} - \xi_h \mathbf{u} \cdot \frac{\mathbf{h}}{h} \cos \omega t, \qquad (4)$$

Here $\xi_H = \beta M_s H$ and $\xi_h = \beta M_s h$; **H** and **h** – steady and AC magnetic fields accordingly. The first term in(4) – anisotropy energy with $\sigma = \beta K_a$, where $\beta = v/k_B T$, K_a – effective constant of anisotropy, including magneto-crystal anisotropy, form anisotropy and surface one; ϑ - angle between anisotropy axis and magnetization, second and third terms – Zeeman energy. Decision for distribution function:

$$W(t,\vartheta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm}(t) Y_{lm}(\vartheta,\varphi)$$

Fig.11. Fit of SPSMO compound M_2 -response by decision of Fokker-Plank equation. T = 306.9K. Power-law distribution of clusters was used. Since a presence of a weak *H*-hysteresis the curves (Re(Im) M_{2dir} + Re(Im) M_{2rev})/2 were fitted. The dynamical parameters can be found by this approach only.

Peter the Great SPb Polytechnic University cluster was used in these calculations.

Заключение

I. Нейтронная дифракция показывает сходную эволюцию структуры в SSMO и SPSMO образцах: присутствует структурный переход из орторомбической псевдокубической фазы с небольшими ЯТ искажениями I в низкотемпературную фазу II с существенно большими искажениями и орбитальным порядком (орторомбическую и моноклинную соответственно). Дальний ФМ порядок образуется только в фазе I. Фаза II испытывает АФ упорядочение А-типа в SSMO и комбинацию А- и псевдо СЕ-типов упорядочения в SPSMO образце. Отметим, что похожий сценарий эволюции структуры наблюдался и в $Pr_{0.5}Sr_{0.5}MnO_3$ манганите [Damay et al. JMMM 184 (1998) 71].

II. Оба образца обладают свойством КМС, при этом SSMO испытывает И-М переход, а SPSMO – нет. Данные по М(Т) определенно указывают на присутствие АФ упорядочения во 2-м образце.

Ш. Зависимость поляризации от Т разительно отличается: в то время как в SSMO деполяризация лишь в области ниже 120 К, в SPSMO она стартует с 307 К. Измерения SAPNS (q = 0.01 A⁻¹) позволили отследить развитие структурного перехода в SPSMO.

IV. Измерения M_2 показали, что образование кластеров, обладающих ФМ компонентой начина-ется выше комнатной температуры ($T^* > 310$ K). Однако в SSMO их концентрация растет очень слабо, показывая широкий максимум и затем уменьшение, и остается ~ на 2 порядка ниже, чем в SPSMO вплоть до T ~ 120 K < T_{\odot} ниже которой начинается деполяризация. В то же время в SPSMO деполяризация начинается практически сразу ниже 320 K, а концентрация кластеров быстро растет и сопровождается их коалесценцией. Это приводит, по-видимому, к перколяцион-ному И-М переходу в отдельных кристаллитах образца с фазой I, сопровождающемуся образованием дальнего ФМ порядка перколяционного типа, который проявляется в ND при T ~ 270 K. Это подтверждает отсутствие И-М перехода во всем образце, предположительно за счет малого количества этой фазы (< 20%). КМС наблюдается, по-видимому, за счет метамагнитного перехода («плавления» AФ фазы) под действием поля в кристаллитах с фазой II. Необычное поведение кластеров в SSMO можно объяснить АФ характером (с присутствием заметной ФМ компоненты) их упорядочения. Вносимый изовалентным замещением слабый дополнительный беспорядок, по-видимому, способствует образованию ФМ кластеров.

V. Использование кинетического уравнения Фоккера-Планка для анализа M_2 отклика в области его безгистерезисного поведения (суперпарамагнитный режим поведения кластеров) с использованием данных деполяризации нейтронов позволяет, в принципе, определить геометрические и динамические параметры кластеров. В случае SPSMO состава анализ указывает на степенную функцию распределения размеров кластеров с показателем 2.55 (фрактальная размерность кластеров), что нуждается в дальнейшей проверке.

THE END

Thank you for your attention

Fig.12. Fit of SPSMP compound Re M_2 -response by Eq. 1 in static limit with *M* described Lanzheven function + linear on *H* response of matrix. T = 306.9K. $\mu \sim 1.1 \cdot 10^5 \mu_B$, $N_{cl} \sim 1.5 \cdot 10^{14}$ 1/g.

Full Hamiltonian

$$H = H_{\text{kin}} + H_{\text{Hund}} + H_{\text{AFM}} + H_{\text{el-ph}} + H_{\text{el-el}};$$

there are five important ingredients that regulate the physics of electrons in manganites:

- (i) H_{kin} the kinetic term of the e_g -electrons.
- (ii) H_{Hund} the Hund coupling between the e_g -electron spin and the localized t_{2g} -spin.
- (iii) H_{AFM} the AFM Heisenberg coupling between nearest-neighbor t_{2g} -spins.
- (iv) H_{el-ph} the coupling between the e_g -electrons and the local distortions of the MnO₆ octahedron.
- (v) Hel-el the Coulomb interactions among the eg-elect_rons ($\Box 0.7 \text{ eV}$).
- This expression is believed to define an appropriate starting model for manganites, but, unfortunately, it is quite difficult to solve such a Hamiltonian of manganites, and some simplifications are usually used.

One-or*bital double-exchange model* (*Zener*, 1951; Furukawa, 1994)

$$\mathbf{H}_{\mathrm{DE}} = -t \sum_{\langle i,j \rangle,\sigma} (a_{i\sigma}^{T^*} a_{j\sigma} + h.C.) - J_H \sum_i S_i S_j + J_{AF} \sum_{\langle i,j \rangle} S_i S_j$$

t $\Box 0.3 eV$; JH $\Box 1 e_V$; JAF $\Box 0._{01} eV$;

where ai is t_{he} annihilation operator for an electron with spin at site i, but without orbital index. Note that HDE is q_{ua} dratic in the electron operators, indicating that it is reduced to a one-electron problem eg spin $s_i = \Box f_{ai\gamma} \beta_o n_{the}$ background of localized t2g spin S. In absence of external magnetic field cluster moments are oriented along anisotropy axis, the moment of ensemble being $\mathbf{M} = 0$. To reach thermal equilibrium at field turning on, magnetic moments of part of ensemble should change their orientation on angle π . The latter is required the transition across barrier (Fig.7) under action of thermal fluctuation. The relaxation time is described by Neel-Brown expression:

 $\tau = \tau_0 \exp(\Delta E_B / kT), \qquad \Delta E_B = K_a v \qquad (3)$

Here $_{Ka} i_{s}$ effective anisotropy cons t_{a} nt, v – cluster volume, $\tau 0 \sim 10-10$ s. Transition from $_{sP}M$ reg^{ime} to blocking one, which is characterized by Hhysteresis arising in M(H) μ M2(H) is determined by condition; tmeas $\approx \tau$, from which the blocking temperature can be found:

(4)

TB ≈ *Kav/[k·ln(tmeas/t0)]*

 $\operatorname{Easy axis}_{\theta}$

Fig.8. Magnetic hysteresis: (a) origin and phenomenology of hysteresis. The insets are energy-landscape equivalents of the magnetization

Inserts in **Fig. 8** show schematically a change of barrier for FM clusters in two-well potential in presence of external magnetic field:

 $\Delta E_B = K_a v + \mu H(t).$ (5) Thus, relaxation time (3) will be function of external field, and in $M_2(H,T)$ will appear high harmonics provided by this parametrics.

From expression (4) is clear the dependence of blocking temperature T_B on cluster dimension, and Hhysteresis of $M_2(H)$ response on frequency of H-scan, F_{sc} , of steady field H. For the latter, in case of signal accumulation at periodic H-scan the time of measurement is $\tau_{meas} = 1/F_{sc}$.

Электронная структура ионов Мп

Field splitting of the five-fold degenerate atomic 3*d* levels into lower *t* and higher *e* levels. The particular Jahn-Teller distortion sketched in the figure further lifts each degeneracy as shown. $J_{CF} \sim 2 \text{ eV}, J_{H} \sim 2 - 3 \text{ eV}, J_{JT} \sim 0.5 \text{ eV}, t \sim 0.3 \text{ eV}.$

Magnetic and electronic phase diagram versus doping x for $La_{1-x}Ca_xMnO_3$ (medium band width). [Schiffer P., Ramirez A. P., Bao W. and Cheong S-W. *Phys. Rev. Lett.* **75**, 3336 (1995)]

Two band model.

Spectral density ($E_{JT} = -0.5 \text{ eV}$, D = 1.2 eV, U = 5 eV, $J_F = 2 \text{ meV}$) : (a) x = 0.1, T = 0 (FI), (b) x = 0.3, T = 180 K ($< T_C = 240 \text{ K}$) (FM), occupied band states are shown shaded, (c) T = 350 K (PI). Vertical line is the *l* polaron level.

FIG. 1 (color online). Real space electronic distribution obtained from simulations on a 16³ cube. Magenta (darkest) denotes hole clumps with occupied *b* electrons, white (lightest) denotes hole clumps with no *b* electrons, cyan (2nd lightest) denote singleton holes, and light blue (2nd darkest) represents regions with ℓ polarons. Left: Isolated clumps with occupied *b* electrons (*b*-electron puddles). Right: Larger doping; percolating clumps. Inset: "macroscopic phase separation" absence of long range Coulomb interaction ($V_0 = 0.0$).

V.B. Shenoy et al., PRL 98, 066602 (2007)

FIG. 4. Schematic representation of theories for manganites. (a) is a simple "double exchange" scenario, without phase competition. (b) is based on a gas of polarons above the Curie temperature T_C , also without phase competition. In (c), a phase-separated state above the ordering temperatures is sketched.

