Доказательство антисимметричного обмена в TbMn₂O₅: дифракция поляризованных нейтронов

Игорь ЗОБКАЛО, Сергей ГАВРИЛОВ

Петербургский институт ядерной физики им. Б.П. Константинова НИЦ «Курчатовский институт»

Andrey SAZONOV, Vladimir HUTANU

Institute of Crystallography, RWTH Aachen University and Jülich Centre for Neutron Science at Heinz Maier- Leibnitz Zentrum, Garching, Germany

Magnetic multiferroics RMn_2O_5 - R = Tb, Yb, Y, Dy, Er, Eu...

Polarization neutron scattering without analysis (PND), DPN PNPI

Helical structure $M(r_n) = u\mu_u \cos(r_n \cdot k) + \nu\mu_v \sin(r_n \cdot k)$ $m = [u \times v]$ - helix vector

 $I(\mathbf{k}) \sim F^2(\mathbf{q}) \frac{1}{4} [1 + (\mathbf{em})^2 \pm 2(\mathbf{em})(\mathbf{eP})(n_r - n_l)] \delta(\mathbf{q} - \mathbf{\tau} \pm \mathbf{k})$ $n_r \text{- portion of "right" domains, } n_l \text{- portion of "right" domains}$

Measurement of satellites with $\mathbf{k}_1 = (k_x \ 0 \ k_z)$ and $\mathbf{k}_2 = (k_x \ 0 \ -k_z)$

 $\lambda = 2.08$ Å

 n_r - port

XYZ polarization analysis, DPN PNPI

Measurement of satellites with $\mathbf{k}_1 = (k_x \ 0 \ k_z)$ and $\mathbf{k}_2 = (k_x \ 0 \ -k_z)$

 $\lambda = 2.08 \text{\AA}$

XYZ polarization analysis

I ^{SF} /I ^{NSF} for magnetic satellites (1 0 0)+ \boldsymbol{k}_1 and (-1 0 1)- \boldsymbol{k}_1					
(1 0 0)+ k ₁	16 K (LTIC)	30 K (CM)	38 K (HTIC)		
I_{x}^{SF} : I_{x}^{NSF}	0.91(2):0.09(1)	0.93(3):0.07(3)	0.90(10):0.10(10)		
I_y^{SF} : I_y^{NSF}	0.82(1):0.18(1)	0.84(3):0.16(2)	0.76(11):0.24(11)		
I_z^{SF} : I_z^{NSF}	0.15(1):0.85(1)	0.11(3):0.89(4)	0.33(10):0.67(10)		
(-1 0 1)- k ₁	16 K (LTIC)	30 K (CM)	38 K (HTIC)		
I_x^{SF} : I_x^{NSF}	0.95(5):0.05(3)	0.94(3):0.06(2)	0.94(5):0.06(4)		
I_y^{SF} : I_y^{NSF}	0.37(4):0.63(5)	0.22(2):0.78(3)	0.29(5):0.71(5)		
I_z^{SF} : I_z^{NSF}	0.62(4):0.38(4)	0.79(3):0.21(2)	0.84(5):0.16(5)		

In LTIC phase (T<22K) $\alpha \sim 7(1)^{\circ}$; tilt angle of some "average" magnetic moment $\gamma \sim 18(2)^{\circ}$ with a-axis

In CM (22K<T<36K), and in HTIC (36K<T<43) $\alpha \sim 4(1)^{\circ}$; $\gamma \sim 13(2)^{\circ}$, cf. G. R. Blake et al. Phys.Rev. B **71**, 214402, 2005 In all phases $n_r \approx 0.70$ (5) $n_l \approx 0.30$ (5)

 $n_r \approx 0.62 (3)$ $n_l \approx 0.38 (3)$

Spherical neutron polarimetry (SNP), POLI - MLZ

Elements of polarizing matrix, $E = 0$, LTIC, CM, HTIC						$\lambda = 0.7$ Å, 1.14 Å				
5K (LTIC)	(0.49, 0, 2.31)		(0.51, 0, -2.31)		(1.49, 0, 0.31)		1)			
	х	у	Z	х	у	Z	х	у	Z	
х	-1.04(3)			-0.81(7)			-0.87(9)			
У	-0.17(1)	0.84(2)		0.10(1)	0.78(2)		0.08(3)	-0.44(6)		
Z	-0.13(1)		-0.82(2)	0.12(1)		-0.84(3)	0.09(2)		0.36(6)	
30K (CM)	<mark>ЗОК</mark> (СМ) (0.50, 0, 2.25)		(0.50, 0, -2.25)		(1.50, 0, 0.25)		5)			
	х	у	Z	х	у	Z	х	у	Z	
х	-1.00(4)			-1.02(5)			-1.03(2)			
У	0.04(4)	0.97(4)		0.03(4)	1.05(6)		0.09(4)	-0.75(4)		
Z	-0.03(4)		-0.90(5)	0.04(4)		-1.00(6)	0.09(4)		0.70(4)	
37K (HTIC) (0.49, 0, 2.27)								$R=\mu_u/\mu_v$ - ec		
	х	у	Z		Elliptical parameter $\mathcal{P}_{yy} = -\mathcal{P}_{zz} \sim \frac{\mu_u^2}{2}$			п	$2 - \mu^2 = R^2 \cos^2 \beta - 1$	
x	-0.93(5)							$\frac{-\mu_v}{2} = \frac{K \cos p - 1}{2^2 + 2}$		
У	-0.11(6)	0.96(7)		$\mu_{u}^{2} + \mu_{v}^{2} R^{2} \cos^{2}\beta + 1$						
Z	0.04(2)		-0.92(2)					2	$(1 - 2n_r)$	$)\mu_{\mu}\mu_{\nu} = 2(1-2n_r)R\cos\beta$
Chiral parameter $\mathcal{P}_{yx} = \mathcal{P}_{zx} \sim \frac{1}{\mu_u^2}$				$\mu_u^2 + \mu$	$\frac{1}{u_v^2} = \frac{1}{R^2 \cos^2\beta + 1}$					
$\ln T C \ln \ln \alpha = 2(1)^{\circ}$					1	n all nhases				

In LTIC phase (T<22K) $\alpha \sim 3(1)^{\circ}$; $\gamma \sim 19(2)^{\circ}$ with a-axis

In CM (22K<T<36K), and in HTIC (36K<T<43) $\alpha \sim 5(1)^{\circ}$; $\gamma \sim 7(2)^{\circ}$

SNP results are in good agreement with XYZ !

Electric field dependence of chiral parameter \mathcal{P}_{yx} for reflection (1 0 -2)- \mathbf{k}_1 at $\mathbf{Z}\mathbf{k}'$ (LTIC) and chiral population					
	ZFC	FC -5kV/cm	FC +5kV/cm		
\mathcal{P}_{yx}	0.14(1)	0.03(2)	0.09(2)		
n _r	0.62(2)	0.52(3)	0.58(3)		

We couldn't change noticeably chirality parameters under reversal of the electrical field from -3kV/cm to +3kv/cm at permanent temperature 14K after cooling in zero field - chiral domains are strongly pinned.

Electric field - 3 kV (-5 kV/cm) change chiral domain population in FC mode from non-equilibrium to equal portions.

Cooling in field +5 kV/cm restores non-equality in chiral domain population.

Chirality in helical structures

Chiral sense is defined by Dzyaloshinsky-Moria interaction.

S. Maleyev, Phys. Usp. **45**, 569, 2002 S. Maleyev, Physica B **350**, 26, 2004

Regarding magnetic spiral structure as Dzyaloshinsky-Moriya helix, one could assume that direction of helix vector m coincides in direction with DM vector D.

Chiral population by different methods

SNP	XYZ	PND
$n_r \approx 0.62 (3)$	$n_r \approx 0.70 (5)$	$n_r \approx 0.75 (5)$
$n_l \approx 0.38 (3)$	$n_l \approx 0.30 (5)$	$n_l \approx 0.25 (5)$

Antisymmetric exchange – Dzyaloshinsky-Moria interaction, DMI

$$\mathbf{V}_{\mathrm{DM}} = \mathbf{D}[\mathbf{S}_1 \times \mathbf{S}_2]$$

I. Dzayloshinsky, J.Phys.Chem.Solids 4, 241, 1958 T. Morya, Phys.Rev. 120, 91, 1960

Antisymmetric superexchange through anion

F. Keffer, Phys.Rev. **126**, 896, 1962
A. S. Moskvin, I. G. Bostrem, Sov. Phys. Solid State **19** 1532, 1977
$$\mathbf{V}_{\text{DM}} = d(\theta) [\mathbf{R}_1 \times \mathbf{R}_2] [\mathbf{S}_1 \times \mathbf{S}_2]; \ d(\theta) = d_1 + d_2 \cos\theta$$
$$\mathbf{D} = d(\theta) [\mathbf{R}_1 \times \mathbf{R}_2]$$

 $[\mathbf{R}_1 \times \mathbf{R}_2]$ - determines *the sense* of Dzyaloshinsky vector. $d(\theta) = d_1 + d_2(\theta)$ determines *the sign* of Dzyaloshinsky vector, does not depend on the choice of ion numeration

The sign of antisymmetric exchange parameter $d(\theta)$ is very sensitive to the bond angle in the vicinity of some critical angle value θ_k :

$$cos\theta_{\rm k} = -d_1/d_2$$

Four pairs (two sets):

 $\begin{array}{l} \operatorname{Mn1-Mn21} \to \operatorname{Mn1} - \operatorname{O31} - \operatorname{Mn21} \\ \operatorname{Mn1-Mn22} \to \operatorname{Mn1} - \operatorname{O32} - \operatorname{Mn22} \\ \Theta \sim 132^{\circ} \end{array} \right\} d(s1)$

 $\begin{array}{l} \operatorname{Mn1-Mn23} \to \operatorname{Mn1} - \operatorname{O43} - \operatorname{Mn23} \\ \operatorname{Mn1-Mn24} \to \operatorname{Mn1} - \operatorname{O44} - \operatorname{Mn24} \\ \Theta \sim 123^{\circ} \end{array} \right\} d(s2)$

 $d(s1) \approx \pm d(s2)$

for Pbam $\mathbf{D} = \mathbf{0}$

Pbam
$$\longrightarrow$$
 Pm, $\gamma = 90^{\circ}$ *O31, O32, O43, O44 displacements*

V. Baledent et al, Phys.Rev.Lett. 114, 117601, 2015

$$\mathbf{D}/|\mathbf{D}| = \begin{cases} [\mathbf{R}_{1-31} \times \mathbf{R}_{21-31}] + \\ [\mathbf{R}_{1-32} \times \mathbf{R}_{22-32}] \} \pm \\ \{ [\mathbf{R}_{1-43} \times \mathbf{R}_{23-43}] + \\ [\mathbf{R}_{1-44} \times \mathbf{R}_{24-44}] \} \end{cases} \xrightarrow{\alpha(+)} = 5^{\circ} \\ \alpha(-) = 15^{\circ} \end{cases}$$

angle between Dzyaloshinsky vector **D** and c-axis

выводы

Антисимметричное DMI-взаимодействие эффективно во всех магнитоупорядоченных фазах (HTIC, CM, LTIC) в обменно-фрустрированном TbMn₂O₅. Возможность существования DMI в TbMn₂O₅ подтверждается анализом модели антисимметричного суперобмена для нецентросимметричной структуры *Pm*.

Приложение электрического поля приводит к изменению углов связей Mn-O, близких к критической величине θ_k , характерной для TbMn₂O₅. Эти изменения достаточны, чтобы изменить знак параметра антисимметричного обмена $d(\theta)$ в некоторых доменах.

Поскольку DMI-взаимодействие приводит к неравновесной заселенности киральных доменов, его можно рассматривать как причину возникновения ферроэлектричества в TbMn₂O₅.

Усиление электрической поляризации в соразмерной СМ фазе происходит включением Гейзенберговского обменного взаимодействия.

Спасибо за внимание!