Совместное использование магнитной рентгеновской дифракции и дифракции поляризованных нейтронов при исследовании намагниченности в YTiO<sub>3</sub>.

B. Gillon, A.G. Gukasov, I.A. Kibalin, A.Bataille, F. Porcher: Laboratoire Léon Brillouin, France.

A.B. Voufack, N. Claiser, M. Souhassou, C. Lecomte: Institut Jean Barriol, France.

J.M. Gillet, Z.Y. Yan: Laboratoire SPMS, France.

the .... All the search and the second

M. Ito, H. Sakurai, K. Suzuki: Gunma University, Japan.

Y. Sakurai: Japan Synchrotron Radiation Research Institute, Japan.

Школа по физике поляризованных нейтронов 16 декабря 2016 г.

auch and will shire a transfer



## Объект исследования – YTiO<sub>3</sub>



YTiO<sub>3</sub> ферромагнетик, T<sub>c</sub>=30K [Greedan1985].

SQUID измерения [Kovaleva 2007].





Неспаренный электрон титана может занимать две из пяти 3d орбиталей (zx и yz орбитали)



Орбитали антиферромагнитно упорядочены [Akimitsu 2001].



Орбитальный член в магнитный структурных фактор F<sup>L</sup><sub>M</sub> близок к нулю [Suzuki 2009].



Эксперимент с поляризованными нейтронами (PND)

#### Принципиальная схема:



$$R_{hkl} = \frac{I_{+}}{I_{-}} = \frac{(F_{N}^{2} + 2Pq^{2}F_{N}F_{M} + q^{2}F_{M}^{2})}{(F_{N}^{2} - 2Peq^{2}F_{N}F_{M} + q^{2}F_{M}^{2})}$$

#### Условия эксперимента

| дифрактометры  | 5C1, 6T2 |
|----------------|----------|
| температура    | 2, 5 K   |
| магнитные поля | 5, 6 T   |



)hée Laboratoire Léon Brillouin

# Анализ структуры (дифрактометр 5C2, LLB)

| Условия эксперимента                                          |                                                         |                                               | Dévete                                    |                 |                                                                                             |                |        |
|---------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|----------------|--------|
| Длина волны                                                   | 0.83 Å                                                  | 400                                           | $\chi^2 = 3.9$                            | r= <b>3.</b> 2% |                                                                                             |                |        |
| Температура                                                   | 14K, 40K,<br>90K, RT                                    | _300                                          |                                           | Ĭ               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <u>ا</u><br>[ا |        |
| Число измеренных /<br>уникальных рефлексов                    | 1318 / 282                                              | 005<br>002                                    |                                           |                 |                                                                                             |                | -<br>7 |
| R factor внутренний                                           | 2.1%                                                    | .=                                            |                                           |                 |                                                                                             | <b>!!!</b>     |        |
| $I_{hkl} \sim y \cdot F_N^2$                                  |                                                         | 100                                           | - <b>! </b>                               | , 'I            |                                                                                             |                |        |
| Учет экстинкции в Fu                                          | llProf:                                                 | 0                                             |                                           |                 |                                                                                             | 1              | 5      |
| $y = \left(1 + 2.5 \cdot 10^{-4} \frac{q}{\sin^2}\right)$     | $\left(\frac{F_N^2\lambda^3}{n(2\theta)}\right)^{-0.5}$ | 0                                             | 0.1 0.2                                   | 0.3<br>sin(θ)/λ | 0.4 (<br>., A <sup>-1</sup> (                                                               | ).5            | 0.6    |
| $q = (q_1 h^2 + q_2 k^2 + q_3 l^3)$                           | $+ q_4 h k + q_5 h$                                     | $l + q_6 kl) \cdot \left(\frac{1}{si}\right)$ | $\left(\frac{\lambda}{in\theta}\right)^2$ |                 |                                                                                             |                |        |
| $q_1 = 1.25(6) \ q_2 = 1.72(0) \ q_4 = 0.38(6) \ q_5 = -0.52$ | 5) $q_3 = 1.75$<br>2(6) $q_6 = -1.75$                   | 5(6)<br>14(5)                                 |                                           |                 |                                                                                             |                | 5      |

$$R_{exp.} = \frac{I_{+}}{I_{-}} = \frac{y^{+}}{y^{-}} \cdot R_{0} = \frac{y^{+}}{y^{-}} \cdot \frac{(F_{N}^{2} + 2Pq^{2}F_{N}F_{M} + q^{2}F_{M}^{2})}{(F_{N}^{2} - 2Peq^{2}F_{N}F_{M} + q^{2}F_{M}^{2})}$$

$$y^{\pm} = \left(1 + 2.5 \cdot 10^{-4} \frac{q(F_N \pm F_M)^2 \lambda^3}{\sin(2\theta)}\right)^{-0.5}$$



6

Выражения для расчета флип отношений (реализовано в программе mfloppc)

$$\psi_l(\vec{r}) = R_l(r) \sum_m A_l^{\pm m} Y_l^{\pm m}(\vec{r}_0)$$

 $\rho(\vec{r}) = p |\psi_l(\vec{r})|^2$ 

$$F_M^S(\vec{Q}) = V \int \rho(\vec{r}) \exp\left[-i \, \vec{Q} \cdot \vec{r}\right] d\vec{r}$$

$$F_M\left(\vec{Q}\right) = F_M^S\left(\vec{Q}\right) + F_M^L\left(\vec{Q}\right)$$

for  $YTiO_3$  the  $F^L_M$  is close to zero

$$R_{PND} = \frac{y^+}{y^-} \cdot \frac{(F_N^2 + 2Pq^2F_NF_M + q^2F_M^2)}{(F_N^2 - 2Peq^2F_NF_M + q^2F_M^2)}$$

- F<sub>м</sub> магнитный структурный фактор;
- F<sup>s</sup><sub>M</sub> спиновый член F<sub>M</sub>;
- F<sup>L</sup><sub>M</sub> орбитальный член F<sub>M</sub>;
- F<sub>N</sub> ядерный структурный фактор;
- Р поляризация падающего пучка;
- е эффективность флиппера;
- у+,- поправки на экстинкцию;
- q синус угла между переданным моментом и магнитным полем;
- ρ плотность неспаренного электрона
- р магнитный момент атома;
- ψ волновая функция электрона;
- R радиальная функция, Slater type;
- Y<sub>I</sub><sup>mp</sup> вещественные сферические

гармоники.

### Подгонка PND данных



## Эксперимент no X-ray magnetic diffraction (XMD)

#### Принципиальная схема:

$$R_{hkl} = \frac{I_{+} - I_{-}}{I_{+} + I_{-}}$$



$$R_{XMD} = \gamma f_P \frac{F_M^S \sin(\alpha) + F_M^L(\cos(\alpha) + \sin(\alpha))}{F_e}$$
$$\gamma = \frac{\hbar\omega}{mc^2}$$

$$f_P = \frac{P_C}{1 - P_L}$$

В случае S-конфигурации (α=135°):

$$R_{XMD} = \gamma f_P \frac{F_M^S}{\sqrt{2}F_e}$$

, - F<sub>s</sub> спиновый член F<sub>м</sub>;

- F<sub>L</sub> орбитальный член F<sub>M</sub>;
- F<sub>e</sub> электронный структурный фактор;
- ү энергетический фактор;
- f<sub>p</sub> фактор поляризации;
- α угол между падающим
   пучком и направлением
   намагничивания;
- Р<sub>L</sub> степень линейной поляризации падающего излучения;
- Р<sub>с</sub> степень циркулярной поляризации падающего излучения;

### Подгонка XMD данных



|                               | XMD     |
|-------------------------------|---------|
| $\mu_{Ti}$ ( $\mu_B$ )        | 0.64(7) |
| $d_{zx}$ orbital              | 0.43(8) |
| <i>d<sub>yz</sub></i> orbital | 0.57(8) |
| $\mu_{O_1}\left(\mu_B ight)$  | 0.19(8) |
| $\sqrt{\chi^2}$               | 2.9     |

### Сравнение параметров двух моделей на основе PND и XMD данных

|                               |     |                                                                                                                                            | PND                       |                                          | XMD        |  |  |
|-------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|------------|--|--|
| $\mu_{Ti}$ ( $\mu_B$ )        |     | 0.718(5)                                                                                                                                   |                           |                                          | 0.64(7)    |  |  |
| $d_{zx}$ orbital              |     | 0.42(2)                                                                                                                                    |                           |                                          | 0.43(8)    |  |  |
| <i>d<sub>yz</sub></i> orbital |     | 0.58(3)                                                                                                                                    |                           | 0.57(8)                                  |            |  |  |
| $\mu_{O_1}$ ( $\mu_B$         | , ) | 0.                                                                                                                                         | 027(4)                    |                                          | 0.19(8)    |  |  |
| $\mu_{O_2}$ ( $\mu_B$         | ,)  | 0.                                                                                                                                         | 012(3)                    |                                          |            |  |  |
| $\sqrt{\chi^2}$               |     |                                                                                                                                            | 5.6                       |                                          | 2.9        |  |  |
| 3<br>≞ 1.5<br><u>₩</u><br>0   | 0   | ۹ PND<br><sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> <sup>*</sup> | <b>≜</b><br>0.6<br>n(θ)/λ | <b>▲≵</b> ▲▲<br>0.9<br>, Å <sup>-1</sup> | XMD<br>1.2 |  |  |

# Спасибо за внимание