

PETERSBURG NUCLEAR PHYSICS INSTITUTE

Russia, 188300, Leningrad District, Gatchina, Orlova Roscha

Изучение киральных магнетиков с помощью рентгеновского магнитного кругового дихроизма

Сафиулина И.А. (НИЦ КИ ПИЯФ) Научный руководитель: Григорьев С.В. (НИЦ КИ ПИЯФ) Рогалев А.Л. (ESRF)

OUTLINE

- **1. Noncentrosymmetric cubic magnets**
- 2. XMCD:two-step model and experiment
- 3. ID12 beamline
- 4. Experimental results
- 5. Conclusions

NONCENTROSYMMETRIC CUBIC MAGNETS (FeGe)

Structural spiral

Magnetic spiral

Period of magnetic spiral is longer than period of structural spiral, e.g. FeGe lattice constant is 4.7Å, period of magnetic spiral is 18nm

Page 3 I. Safiulina | ΦΠΗ-2016 | Dec. 2016

PHASE DIAGRAMS OF MONOGERMANIDES OF TM

The European Synchrotron

XMCD : TWO STEP MODEL FOR K-EDGE

LCP photon
$$\langle L_{ph}
angle = +\hbar$$

RCP photon
$$\langle L_{ph} \rangle = -\hbar$$

Electric dipole selection rules:

$$\Delta m_l = +1$$
$$\Delta m_l = -1$$

$$\sum \left(\vec{L}_{ph} + \vec{L}_{ph-e} \right) = const$$

In the case of the K-edge of transition metals

$$\int XMCD \sim \langle L_z \rangle_{4p} + \varepsilon \, \langle L_z \rangle_{3d}$$

Advantage: element selectivity

Quantity to measure: $\Delta \mu = \mu^+ - \mu^-$

μ⁺, μ⁻ => Absorption cross-sections for CP X-rays with
(+) helicity *parallel* to the sample magnetization
(-) helicity *antiparallel* to the sample magnetization

□ Highly performing X-ray detectors

- □ Magnetic field to magnetize a sample
- □ Source of circularly polarized X-rays

The best possible at the 3rd generation synchrotron radiation facilities

ID12 BEAMLINE

- > Photon energy from 2 to 15 keV
- > Beam size 3µm x 30µm (focused with Be lenses)
- Source Sample distance 67 m
- Quarter wave plate (QWP) is used to measure circular polarization degree

> Detectors are Si photodiodes

ESRF BEAMLINE ID12 (HIGH FIELD SET-UP)

XMCD ON FeGe SINGLE CRYSTAL

Ge 4p states are magnetically polarized in FeGe via hybridization with 3d states of Fe

XMCD ON FeGe SINGLE CRYSTAL

Ge 4p states are magnetically polarized in FeGe via hybridization with 3d states of Fe ESRF Page 11 I. Safiulina | ΦΠΗ-2016 | Dec. 2016 The European Synchrotron

XMCD ON MnGe POLYCRYSTALLINE SAMPLE

XMCD signal at the Ge K-edge follows macroscopic magnetization whereas TM K-edge not $M_{FeGe} \approx 1\mu_B/f.u. M_{MnGe} \approx 1.7\mu_B/f.u.$

XMCD AT THE K-EDGE OF TMs

- We have measured XMCD spectra at the Kedges in noncentrosymmetric cubic structures MnGe and FeGe
- We have observed an induced magnetic moment on Ge site
- We have obtained the difference between Mn and Fe XMCD-signals due to 3d states in FM state

ACKNOWLEDGEMENTS

Спасибо за внимание!

Page 15 I. Safiulina | ΦΠΗ-2016| Dec. 2016