

Кристаллическая и магнитная структура BiMnO₃: ab initio расчет

Назипов Д.В., Гончарь Л.Э., Никифоров А.Е.

Уральский федеральный университет, Екатеринбург, Россия

One-particle Kohn-Sham equation:

$$[T_e + V_{ne} + V_{ee} + V_{xc}]\psi_i(r) = \varepsilon_i\psi_i(r)$$

- T_e kinetic energy of electron V_{ne} core-electron interaction
- V_{ee} electron-electron Coulomb interaction V_{xc} – exchange-correlation interaction of electrons

$$\rho(r) = \sum_{i} |\psi_i(r)|^2 \tag{1}$$

$$V_{eff}(r) = V_{ne}[\rho(r)] + V_{ee}[\rho(r)] + V_{xc}[\rho(r)]$$
(2)

$$\left[T_e + V_{eff}\right]\psi_i(r) = \varepsilon_i\psi_i(r) \tag{3}$$

- Adiabatic approximation
- T = 0K
- Ions -> Basis sets, pseudopotentials

 $\psi_i(r) = \sum_j c_{ij} \varphi_j(r)$ Basis functions $\varphi_j(r)$: Plain waves Gauss functions (CO LCAO)

• Exchange-correlation functional

$$\mathbf{H} = T_e + V_{ne} + V_{ee} + \mathbf{V}_{\mathbf{xc}}$$

Calculation details

- CRYSTAL14 [1] package
- Crystal orbitals LCAO approximation
- Hybrid DFT/Hartree-Fock
 - WC1LYP exchange-correlation functional
 - with 16% Hartree-Fock exchange energy
- All-electron Gauss-type basis sets for Mn³⁺ and O²⁻
- Bi³⁺ pseudopotential, 6s² not included in core
- Spin polarized mode, high-spin state S=2 for Mn³⁺

Monoclinic phase: space group C2/c, Z=4

Lattice constant	a	b	С	β	
Value, Å	9.484(9.569)	5.589(5.602)	9.799(9.879)	110.96(111.02)	B
				•	rarararararararararararararararararara

7

Crystal structure of BiMnO₃

Calculated and experimental [2] (in brackets) crystal structure parameters

Atom coordinates in cell						
Atom	Wyckoff symbol	x/a		y/b	z/c	
Bi	8f	0.1351(0.1365)		-0.230(-0.217)	0.1181(0.1269)	
Mn1	4e	0		0.2014(0.2113)	0.25	
Mn2	4c	0.25		0.25	0	
01	8f	0.0993(0.0991)		0.1666(0.1776)	0.0794(0.0815)	
O2	8f	0.3510(0.3524)		0.4496(0.4567)	0.1662(0.1646)	
O3	8f	0.1447(0.1443)		0.4161(0.4342)	0.3782(0.3639)	
Bond lengths, Å						
Mn1-O1	2.20(2.20)			Mn2-O1	1.91(1.93)	
Mn1-O2	-	1.91(1.90)		Mn2-O2	2.24(2.23)	
Mn1-O3	1	1.95(1.97)		Mn2-O3	1.92(1.95)	

[2] P. Toulemonde et al. Phys. Rev. B 89, 224107 (2014)

Charge density map around Bi ions

BiFeO₃

BiMnO₃

 Antiferroelectric ordering of dipole moments in BiMnO₃

Magnetic moment of Mn³⁺ ions

Experimental [3] Mn^{3+} magnetic moment 3.92 μ_B

- High-spin state S=2
 - locked spins during all SCF cycles: **3.81** μ_B locked spins only during first two SCF cycles: **3.81** μ_B
- Mid-spin state S=1: 1.93 μ_B
- Low-spin state S=0: $3.71 \mu_B$
- Paramagnetic phase

lowest energy

Orbital ordering in Lu₂V₂O₇

Calculated exchange coupling constant: J = 8.18 meV [4] Experimental (spin waves): J = 8.22 meV [5]

Orbital ordering obtained using the polarized neutron diffraction technique [6]

Fig. 3. Spin density distribution in the $Lu_2V_2O_7$ compound: (a) in the (111) plane containing three V⁴⁺ ions and (b) in the plane passing through the O–V–O bonds.

[4] D. Nazipov *et al.* Phys. Solid State **58**, 10, P.1989 (2016)
[5] H. Ichikawa *et al.* J. Phys. Soc. Japan **74**, 3, P.1020 (2005)
[6] M. Mena et al, Phys. Rev. Lett. 113, 047202 (2014)

Phonon spectra of BiMnO₃

 $\Gamma = (13A_g + 14B_g)^{Ram} + (14A_u + 16B_u)^{IR} + (A_u + 2B_u)^{Acoust}$

Raman active modes

Frequencies of						
Raman active modes						
Nº	Irr. repr.	Calc.	Exp. [6]			
4	A _g	53	50			
7	$\tilde{B_g}$	81	75			
10	$\tilde{B_g}$	93	84			
11	$\tilde{B_g}$	102	93			
13	A_{g}	108	99			
14	Ăg	113				
15	$\tilde{B_g}$	137	133			
18	$\tilde{A_g}$	196	180			
21	$\tilde{B_g}$	223				
23	$\tilde{B_g}$	232				
26	A_{g}	262	242			
28	A_{g}	287	278			
29	$\mathbf{B}_{\mathbf{g}}$	287				
34	$\tilde{B_g}$	346	347			
36	A_{g}	358				
37	A_{g}	360				
39	$\mathbf{B}_{\mathbf{g}}$	373				
42	$\tilde{B_g}$	395	400			
44	A_{g}	422	424			
45	A_{g}	450	440			
46	$\mathbf{B}_{\mathbf{g}}$	456				
47	Ăg	462				
49	$\tilde{B_g}$	482				
53	A_{g}	523				
54	$\tilde{B_g}$	533	530			
58	$\tilde{B_g}$	646	635			
60	Ă	652				

Infrared absorption spectrum

Infrared active modes						
Nº	T	Freq. Calc.	Freq. Exp.	Calc. Intensity		
	Irr. repr.		[6]	(normalized)		
5	A _u	74	68	16		
6	B _u	76	75	59		
8	B _u	85	92	255		
9	A _u	88	101	0.5		
12	A _u	107	115	200		
16	B _u	145	143	282		
17	A _u	189	159	64		
19	B _u	201	196	14		
20	B _u	218	219	200		
22	A _u	229	-	11		
24	B _u	241	237	112	_	
25	A _u	244	-	2		
27	B _u	273	261	213		
30	Au	291	-	1		
31	B	316	284	66		
32	B _u	321	308	1000		
33	A _u	331	321	374		
35	A _u	351	345	312		
38	B _u	368	369	249		
40	B _u	379	-	335		
41	A _u	381	407	34		
43	A _u	421	426	7		
48	B _u	468	463	341		
50	A _u	485	486	261		
51	A _u	490	-	141		
52	B	495	508	159		
55	B	542	541	128		
56	B _u	562	561	401		
57	A _u	567	604	87	10	
59	A _u	649	628	54	13	

[6] W. S. Mohamed et al. Phys. Rev. B 92, 054306 (2015)

- Calculated crystal structure and phonon spectra confirm the inversion presence in BiMnO₃ crystal symmetry
- Antiferroelectric ordering of dipole moments is predicted

Thank you for attention!

Infrared absorption spectrum

In CRYSTAL package the intensity of modes I_p in infrared spectrum is computed according to:

$$I_p = \frac{\pi}{3} \frac{N_A}{c^2} d_p \left| \vec{Z}_p \right|^2$$

where N_A is the Avogadro's number, c is the speed of light, d_p is the degeneracy of the mode, \vec{Z}_p is the massweighted effective mode Born charge vector.

The infrared absorbance spectrum $A(\omega)$ is calculated using following model:

$$A(\omega) = \sum_{p} \frac{I_p}{\pi} \frac{\gamma_p/2}{\left(\omega - \omega_p\right)^2 + \gamma_p^2/4}$$

where ω_p is TO frequency, γ_p is the damping factor that equals 8 cm⁻¹