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Abstract. An overview will be given of new instruments using Larmor precession
of polarized neutrons in precession regions with inclined front and end faces. These
instruments concern small angle scattering, neutron reflectometry and high-resolution
diffraction. The advantages of the first application, spin echo small angle scattering
(SESANS), with respect to conventional SANS, is the range of applicability and orders
of magnitude higher available intensity. The reflectometry application makes it possible
to measure the momentum dependent intensity without hindrance of the waviness of
the sample also with the high intensity of SESANS. The high resolution application
enables one to measure very high resolution diffraction (10−5 relative in momentum
space) without angular of wavelength confinement of the beam, thus with very high
intensity.

Introduction

The instruments discussed in this paper are based on Larmor precession of po-
larized neutrons. The precession angle ϕ goes proportional to the magnetic field
B and the interaction time with that field and thus with the wavelength λ and
the length L of the path through this field:

ϕ = cλBL (1)

in which c is a constant determined by the magnetic moment of the neutrons
(c = 4.6368·1014 T−1m−2). Until recently the precession has been used to analyze
only the wavelength or the magnetic field and interaction time with that field.
The application of the first is the well-known spin echo technique introduced by
Mezei [1], who used the echo of two precession regions to determine very precisely
the wavelength change and thus the energy transfer in a sample. The application
of the second is the well-known neutron depolarization technique [2,3,4,5].

In this paper Larmor precession will be considered to encode not only the
wavelength of a neutron beam, but to encode also the transmission angle through
the precession device. The latter is possible if inclined front and end faces of the
precession devices are used. The idea to encode the direction of the neutron
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trajectory was considered a long time ago by Pynn [6] for focussing purposes
in neutron spin echo and line width studies in elastic diffraction . It received
interest again in the demonstration of the new resonance spin echo technique by
Keller et al. [5]. We recently considered inclined front and end faces of the pre-
cession devices in more detail [8]. We demonstrated that it is possible to encode
the angle of transmission through the device for various purposes. Together with
the wavelength encoding this opens up, besides the normal spin echo applica-
tions, applications in SANS [9,10], neutron reflectometry [11] and high-resolution
neutron diffraction [12,13].

1 Angle and/or Wavelength Encoding
with Larmor Precession

The principle of encoding the angle of transmission through the precession device
is sketched in Fig. 1, where the front and end faces of the precession device
make an angle of θ0 with its main axis. The latter coincides with the average
transmission direction of the neutron beam. The intensity after transmission
through this setup is determined by the precession angle ϕ of the polarization
in the precession device. It can be written as,

I(ϕ) = Is(1 + P0 cos(ϕ)) (2)

with Is the so-called shim intensity of the fully depolarized beam and

ϕ = cλBL
sin θ0

sin(θ0 + θ)
= cλBL(1 + θ cot θ0 +O(θ2)) (3)

where θ is the angular deviation of a certain neutron path from the main axis,
B the magnetic field in the precession device, and L its length measured along
the main axis (see Fig. 1). Eq. 3 shows that the precession angle ϕ encodes the
wavelength as well as the transmission angle θ.
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Fig. 1. Setup consisting of a polarizer P , a π/2 flipper to orient the polarization per-
pendicular to the field B in the precession device, a precession device, a second π/2
flipper, a second polarizer and a detector. The inclined front and end face cause a
different precession angle with different transmission angle θ through the device. We
call this property “encoding of transmission angle”.
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Fig. 2. The spin echo setup consists of two precession devices with opposite magnetic
fields, that cancel the precession angles of the passing neutron spins, when nothing
occurs to the neutrons during transmission. When the transmission direction changes
in a sample between the two devices the net precession angle changes. In the top of
the figure the rotations along different paths are indicated.

1.1 Spin Echo Small Angle Neutron Scattering (SESANS)

Two of such identical devices in series with opposite magnetic fields create a
spin echo setup that enables one to measure small angle scattering of a sample
positioned just between the precession devices. A sketch of the setup is given in
Fig. 2. The technique works as follows. After polarizing the beam in the polarizer
P , the polarization is rotated by a π/2 flipper to a direction perpendicular to the
magnetic field direction of the precession devices. Entering the precession devices
the polarization starts to precess around the field during the time of presence
in that field. According to eq. 3 the net precession angle ϕ after passing the
two precession regions with opposite magnetic fields and different transmission
angles θ1 and θ2 is given by,

ϕ = ϕ2 − ϕ1 = cλBL cot θ0(θ2 − θ1) ≡ zQz (4)

with

z =
cλ2BL cot θ0

2π
(5)

Here the angle difference (θ2−θ1) has been translated to a momentum transferQz

by some scatterer between the precession devices. The complementary quantity
z of Qz defines a length that we will call the spin echo length, in analogy with
the spin echo time. This length can be scanned by varying the quantities λ,B,L
or θ0. The polarization after the two devices is analyzed by a second π/2 rotator
and polarization analyzer.

Single scattering. In terms of the spin echo length z eq. 2 can be rewritten
as:

I(z) = Is(1 − P (z)) (6)

with
P (z) = 1 − σt+ σG(z)t (7)
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and
σ =

1
k2
0

∫
dQydQzdσ/dΩ(Q) (8)

G(z) =
1
σk2

0

∫
dQydQzdσ/dΩ(Q) cos(Qzz) (9)

Here k0 is the momentum of the incident beam, σt represents the fraction of
the polarized beam that scatters in the sample of thickness t with momentum
transfer vector Q = Qyey+ Qzez and differential cross-section dσ/dΩ(Q).The
quantity σ is the total scattering cross-section, hence 1 − σt is the fraction of
un-scattered neutrons that did not change their transmission direction and as a
consequence did not change polarization. The productG(z)t refers to the fraction
of the beam that scattered and therefore changed its polarization according to
eq. 9.

Correlation function G(z). One may note that G(z) is a kind of Fourier
transform of dσ/dΩ(Q). From eq. 7 and eq. 9 follows that the measured po-
larization change as a function of the spin echo length z yields directly this
correlation function G(z) of the scattering inhomogeneity of the sample. This
correlation function is in real space and therefore directly related to the structure
of the sample studied. Calculations show that the spin echo length at which the
polarization saturates corresponds to the longest length scale in a dilute system
[10]. Calculations of G(z) for spherical concentric multi shell particles show that
the number of peaks in the polarization corresponds to the number of shells in
such a system [9]. The location of the peaks corresponds also to the radii of the
shells. It seems to be closely related to the distance probability function, denoted
γ(r) by Glatter [14].

Multiple scattering. In case that multiple scattering is present the formulae
are somewhat more complicated and eq. 7 should be written as

P (z) = 1 − st +G′(z, t) (10)

with st the scattered fraction by the sample and G′(z, t) representing the fraction
of the beam modified in polarization by the changed transmission angle. The
scattering in the sample can be thought to be built up of the scattering processes
taking place along an individual path. Let us assume that n scattering events
happen, with the probability for one such event equal to ρn. The chance is given
by [15]:

ρn =
tn
∫
dQ1ydQ1z

dσ
dΩ (Q1)

∫
dQ2ydQ2z

dσ
dΩ (Q2)...

∫
dQnydQnz

dσ
dΩ (Qn)

k2n
0 1 × 2 × ...× n T

=
(σt)n

n!
T (11)

with
Q1 +Q2 + ...+Qn = Q (12)
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and T is the transmission of un-scattered neutrons given by

T ≡ 1 − st. (13)

The total scattering is found by summing over all path probabilities ρn

st =
∞∑

n=1

ρn =
∞∑

n=1

(σt)n

n!
T = T (eσt − 1) = 1 − e−σt (14)

and thus T = exp(−σt). Let us now evaluate the second term G′(z, t) on the
right hand side of eq. 10. The total wave vector transfer Qz in the cosine term
of this equation is the sum of all individual transfers according eq. 12 occurring
during the passage in one path through the sample and in particular the cosine
term cos(Qz) can be written as

cos(Qz) = cos(Q1z) cos(Q2z)... cos(Qnz) (15)

+ odd terms in Q1, Q2 and Qn. In the integrals over Qi the odd terms in Qi

do not contribute and can be omitted. In a similar way as done for the total
scattering derivation in eq. 11 to eq. 14 we find

ρ
′
n =

tn
∫
dQ1ydQ1z

dσ
dΩ (Q1) cos(Q1zz)

k2n
0 1 × 2 × ...× n (16)

×
∫
dQ2ydQ2z

dσ

dΩ
(Q2) cos(Q2zz)

× ...

∫
dQnydQnz

dσ

dΩ
(Qn) cos(Qnzz) × T

=
(σG(z)t)n

n!
T

and

G′(z, t) =
∑

n

ρ′
n =

∑
n=1

(σG(z)t)n

n!
T = T (eσG(z)t − 1) (17)

Substituting this result in eq. 10 we find for P (z) in case of multiple scattering:

P (z) = T +G′(z, t) = TeσG(z)t = eσt(G(z)−1) = T 1−G(z) (18)

or

G(z) = 1 − ln(P (z)
ln(T )

(19)

This equation shows that there is a one-to-one relation between the measured
polarization and the correlation function G(z) independent of possible multiple
scattering, provided the level st or T can be defined. That means that one does
not need to limit the number of scattering processes of the neutrons in trans-
mission through the sample, contrary to conventional SANS where the sample
thickness must be chosen such as to avoid multiple scattering. This is a great
advantage of the SESANS technique in view of measuring statistics.
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If one does not know the transmission or the total amount of scattering, it is
still possible to scale the depolarization with the thickness to obtain the shape
of the correlation function:

ln(P (z))
t

= σ(G(z) − 1)). (20)

1.2 Neutron Reflectometry

For reflectometry two different setups can be built with different properties.
First, by using the two devices in the geometry as discussed in the previous
section [8,11], the precession devices with inclined faces can also be used to
study the momentum dependent intensity in neutron reflectometry. The formulae
derived for SESANS in single scattering in eq. 4 and eq. 7 can be formulated as

ϕ1 − ϕ2 = zQ (21)

and
I(z) = Is(q1)

∫
dQzR(Qz)(1 + cos(zQz)) (22)

where Is(q1) is the incident depolarized intensity that is weakly dependent on
the incident wave vector q1. Like in the case of SESANS, the measured intensity
I(z) is just the Fourier transform of the scattering cross-section as a function
of momentum transfer Q. In reflectometry the latter is the reflectivity function
R(Qz). The most surprising result is that now R(Qz) is measured independent
of possible waviness of the sample and without any confinement of the incident
beam. Because in general this R(Qz) is a strongly changing function of Qz, the
use of this technique is recommended in combination with a position dependent
detector or a low resolution time of flight monochromatisation to make already
a rough distinction in Qz regions, in order to circumvent the disadvantages of
the Fourier techniques, that makes them less sensitive for low intensity features
in the measured spectrum. When this option is used far enough away from total
reflection, the local structure perpendicular to the surface is directly probed by
I(z) by the spin echo length z.

Let us now consider the second case that we configure the set-up with a mirror
plane between the precession regions, see Fig. 3. In this case all arguments used
in SESANS can be used in this reflection geometry. Specular reflection will lead
to a zero net precession angle, while off-specular reflection will change this angle
and lead to depolarization of the beam. In formula

ϕ1 − ϕ2 = cBλ cot θ01(ψ1 − ψ2) (23)

and
I(B) = I(ψ1)

∫
dxR(x)(1 + cos(cBλ cot θ01(ψ1 − ψ2))) (24)

From these equations it appears possible to separate the specular and off-specular
reflection by only two measurements at zero and high magnetic field in the pre-
cession devices. The depolarization measured at high field gives immediately the
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Fig. 3. Schematic diagram of the second reflectometer mode. The set-up is in principle
the same as the SESANS setup, with only a mirror plane introduced between the
precession regions. This opens new applications especially in neutron reflectometry as
explained in the text.

fraction of off-specular reflected neutrons. More extensive measurements over the
whole B range yield like in the SESANS case, the full correlation function of the
inhomogeneities leading to the off-specular reflection. Especially this correlation
function can be measured parallel and perpendicular to the reflection plane of
the sample, by rotation of the precession devices with respect to the reflection
plane.

1.3 High-Resolution Larmor Diffraction

Two of such devices in series with parallel magnetic fields and the inclination
angles matched in such a way that the precession regions form a precession region
according to Fig. 4, create a very powerful diffraction instrument. This can be
explained in two different ways. In a geometrical way one can see that the path
lengths of the incoming and outgoing neutron in Fig. 4 have lengths L1 and L2,
given by

L1 = L/ sin(θb + ε) and L2 = L/ sin(θb − ε) (25)

in which θb is the scattering angle and ε a mismatch between the reflecting plane
with respect to the inclination angle of the precession device. Realising further
that the wave vector component perpendicular to the precession face is given
by:

k1⊥ =
2π sin(θb + ε)

λ
and k2⊥ =

2π sin(θb − ε)
λ

(26)

which combines to the precession angle

ϕ = cλB(L1 + L2) = 2πcBL
(

1
k1⊥ +

1
k2⊥

)
. (27)

This equation can be understood if one realizes that the precession angle de-
pends on the time spent in a magnetic field, so it is inversely proportional to
the component of the velocity (hence momentum transfer) perpendicular to the
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Fig. 4. Sketch of the high-resolution Larmor precession device. The travel time of the
neutrons through the device matches just the momentum transfer component Q⊥ that
makes that the spread in precession angles of the polarization yield directly the spread
in Q⊥, independent of angular and wavelength spread of the incident beam.

device. The total travel time through the precession device is given by the sum
of the inverses of the perpendicular component of the incident and final wave
vector k1and k2. Thus the precession angle of the neutron beam incident and
reflected can be calculated with some geometry

ϕ = 2πcBL
k1⊥ + k2⊥
k1⊥k2⊥ = ϕ0(1 + cot2 θB tan2 ε) (28)

with
ϕ0 =

8πcBL
Q⊥ (29)

and the measured modulation term cos(ϕ) can be calculated by averaging over ε.
Because ε appears in eq. 28 quadratically, this averaging will deliver a damping
A0 (ϕ0) and also a little phase shift c′′ as defined in the next formula

〈cos(ϕ)〉 ≡ A0 (ϕ0) cos ((ϕ0(1 + c′′)) . (30)

The amplitude and phase shift follow from the next evaluation,

〈cos(ϕ)〉 =
1
X

∫
dx cos(ϕ0(1 + x2)) (31)

with x = ε cot θ and X = ε0 cot θ .

〈cos(ϕ)〉 =
1
X

∫
dx
(
cosϕ0 cos(ϕ0x

2) − sinϕ0 sin(ϕ0x
2)
)

(32)

≈ 1
X

∫
dx(1 − ϕ2

0x
4

2
) cos(ϕ0) − ϕ0x

2 sinϕ0

= (1 − ϕ2
0X

4

10
) cos(ϕ0) − ϕ0

X2

3
sinϕ0
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≈
√

1 − ϕ2
0X

4

5
+
ϕ2

0X
4

9
cos(ϕ0(1 +

X2

3
)).

This results for A0(ϕ0) and c′′

A0(ϕ0) =
(

1 − 4
90

(ϕ0)
2
ε20 cot4 θB

)
and c′′ =

1
3
ε20 cot2 θB) (33)

The amplitude A0(ϕ0) is a damping factor only weakly dependent on the mis-
match ε0 of the reflecting plane with respect to the inclination angle of the
precession device. In the derivaton of A0(ϕ0) we have for convenience assumed
a rectangular distribution of ε with total width 2ε0. The amplitude itself can be
considered as a kind of resolution function.

In a real diffraction pattern the resulting intensity can be described in a
similar way as for the SESANS and the reflectometry. One measures a kind of
Fourier transform of the scattered intensity S(Q):

I(B) = I0

(
1 +

∫
dQ⊥S(Q⊥)A0 (ϕ0) cos (ϕ0)

)
(34)

In the above equation we have omitted the small correction (1+c”) in the phase
ϕ0 for convenience of writing. For a single Bragg peak with a finite width eq. 34
can be described as an extra damping A(ϕ0) due to the spread in Q⊥ values:

I(B) = I0 (1 +A (ϕ0)A0 (ϕ0) cos (ϕ0)) (35)

It appears that the extra damping is just the Fourier transform of the diffrac-
tion line profile F (x) with x = Q0/Q⊥ and Q0 the average wave vector of the
diffraction line, according to the formula,

A(ϕ0) =
1
N

∫
dxF (x) cos(ϕ0x). (36)

Phase changes of ∆Q/Q = 10−6 and line widths of ∆Q/Q = 10−4 to 10−5 are
measurable.

2 SESANS

Single scattering. In Fig. 5 the depolarization due to small angle scattering of a
concentrated solution of polystyrene spheres with a diameter of 200 nm is shown.
The depolarization saturates at a spin echo length z = 100 nm at a polarization
of 0.9. The length scale corresponds roughly with the diameter, it does not match
exactly, which could be due to the interference between the particles which
manifests itself in the structure factor. The saturation level indicates a total
scattering of 10 %, which agrees with the calculated amount of scattering from
the scattering length contrast between the polystyrene and the H2O. Lebedev et
al. [16] obtained similar results with scattering of latex particles, using gratings
to create a modulation in the scattering angle. We will do conventional SANS
measurements on the same sample as a calibration of these measurements.
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Fig. 5. SESANS signal of polystyrene spheres with a diameter of 200 nm with a volume
concentration of 0.1 dissolved in H2O. The measurements were performed at the Hahn-
Meitner-Institut, Berlin with the neutron resonance spin echo setup. A wavelength of
λ = 5.827 Å was used. The tilt angle of the coils was set at 10◦ (squares) and 40◦

(triangles) to vary the sensitivity range of the set–up. The data are normalised to the
polarization of the empty beam.

Fig. 6. SESANS signal of several thicknesses of limestone powder. The measurements
are performed at IRI, Delft with a magnetised foil setup. A wavelength of λ = 2.05
Å is used. The signal is due to the surface structure of the powder particles or due to
double Bragg scattering.

Multiple scattering. Multiple scattering results in peak broadening in conven-
tional SANS. In SESANS it results therefore in stronger decay of the polarization
as a function of z as one can see in Fig. 6. Not only the amount of depolarization
changes, but also the shape becomes narrower for thicker samples. Scaling the
polarization according to eq. 20 gives a collapse of all data on one single curve
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Fig. 7. Data in Fig. 6 scaled according to eq. 20 with the thickness to obtain the shape
of the correlation function G(z). The curves collapse on one single curve when they are
plotted on the same scale. Only the counting statistics are taken into account in the
error bars. To illuminate the differences in the error bars curves have each been shifted
in scale by 0.05 mm−1 with respect to each other.

which is directly proportional to the correlation function G(z) as shown in Fig. 7.
The error bars in the scaled measurements are the lowest in each spin echo length
region for different thicknesses. The relative errors in the polarization are the
smallest when the polarization is far away from 0 and 1. The error bars in the
scaled polarization are therefore smallest for short spin echo length z for thick
samples and for long spin echo length z for thin samples. This makes it possible
to vary the sensitivity range of the experiment by varying the thickness.

3 High Resolution Larmor Diffraction

Measurements have been carried out using the zero-field spin echo setup at
HMI in Berlin [5], using the setup not in spin echo mode but switching the
second precession arm in parallel mode. The first experiment to show that the
technique works was measuring the (111) reflection of perfect silicon wafers under
varying bending stress. As the stress increased the elastic deformation in the
wafers increases, too. This leads to a variation in lattice spacing under reflection
and hence to a damping of the Larmor precession amplitude with increasing
precession angle ϕ0. Fig. 8 shows the damping as function of the precession
angle of the (111) reflection of 0.5 mm thick silicon wafers in various bending
states as indicated in the figure by the radius of curvature R. Other examples of
diffraction are given in [13].

Because of the great sensitivity, this high-resolution diffraction method may
be used effectively in structure determination, distribution of crystallites in pow-
ders in the spatial range of microns, stress distributions in deformed materials
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Fig. 8. Damping of the precession amplitude from the (111) reflection of 0.5 mm thick
silicon wafers as a function of the precession angle at different bending states of the
silicon wafers. The bending is indicated in the figure by the radius of curvature R.

and diffraction line broadening. Local strains of 10−4 to 10−5 are measurable,
while relative lattice spacing changes down to 10−6 are measurable.

Conclusions

Techniques using Larmor precession can overcome several limitations existing in
conventional diffraction techniques. It appears possible to identify the Larmor
precession angle directly in a single diffraction parameter as momentum transfer
or energy transfer, which makes the Larmor technique independent of diffraction
parameters like wavelength and angular resolution. This has great consequences
for usable intensity in the experiments. Where in conventional diffraction the
incident and final angular and wavelength resolution are the limiting factors
in available intensity and achievable resolution, in the Larmor technique these
limitations are absent. The achievable accuracy is only limited by the quality
of the precession device that limits the total precession angle achievable. In the
SESANS option inhomogeneities up to the micron region are measurable, while
in the high resolution diffraction mode line spacing variations of 10−6 and line
widths of the order 10−5 can be determined. In the reflection mode the possibility
of measurement of the momentum transfer without limitations of waviness of the
sample should be mentioned. One disadvantage of the Larmor techniques should
be mentioned. Small features in a specific measurement can be darkened by big
features. For that purpose the use of a rough discrimination of wavelengths or
angle, using a pulsed beam or position sensitive detector, respectively, may be
advantageous.
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