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A novel real-space scattering technique, spin-echo small-angle neutron

scattering for magnetic samples, is described. Previously, this method has been

exploited for non-magnetic samples only, in order to measure the nuclear

density correlation function. Magnetic scattering is different from nuclear

scattering as in the former a partial neutron spin-flip that affects the phase

accumulation of the Larmor precession occurs just at the moment of scattering.

Because of this intrinsic property of magnetic scattering, one can use a magnetic

sample as a flipper in the spin-echo technique. This enables the separation of the

magnetic contribution from other sources of scattering. Particular features of

the technique are pointed out. Some model examples are considered. The

similarity and the differences of magnetic SESANS with respect to the

technique of three-dimensional neutron depolarization are discussed. The

theoretical description is proven by experiments.

1. Introduction

Spin-echo small-angle neutron scattering (SESANS) is a novel

method to determine the structure of materials in real space

(Rekveldt, 1996; Bouwman et al., 2004a; Rekveldt et al., 2003,

2005). The method is based on the Larmor precession of

polarized neutrons transmitted through two successive

precession devices before and after the sample, which encodes

the scattering angle into a net precession angle. The advan-

tages of the method are the relatively high intensity of the

beam, the large length scale (10–104 nm) of correlations in the

sample being studied (inaccessible for conventional SANS)

and the fact that multiple scattering can be taken into account

in an analytic way (Rekveldt et al., 2003). The principal

difference of SESANS from conventional SANS is that it

measures a real-space function. Until now, SESANS has been

applied to non-magnetic systems only (Bouwman et al.,

2004a); application to magnetic systems was considered to be

difficult, if not impossible, due to depolarization of the beam

at the very moment of scattering.

It is well known that a polarized beam becomes depolarized

after transmission through a magnetic sample. Measuring the

depolarization in a ferromagnetic sample is a well established

technique to study large-scale magnetic inhomogeneities.

According to works by Maleyev (Maleyev & Ruban, 1972;

Maleyev, 1982), depolarization is the result of unresolved

small-angle neutron scattering within the angular width � of

the neutron beam accepted by the detector. It is determined

by the integral cross section of scattering ��. Maleyev showed

also that the degree of depolarization depends on the relative

orientation of the initial polarization P0 and the neutron

wavevector k, and on the magnetic anisotropy of the sample.

The technique was extended by applying three-dimensional

polarization analysis to the transmitted beam (Rekveldt, 1973)

and to the SANS (Okorokov et al., 1978), i.e. the polarization

of the transmitted, though partially scattered beam is succes-

sively analyzed along all three laboratory axes. This yields

information on the average magnetic field in the system and

on its magnetic texture. Further information is obtained by

applying a domain model to the system. Thus, the obtained

information is model-dependent and the method itself has all

the disadvantages of an integral technique.

In this paper, we wish to show that we can resolve this small-

angle scattering in magnetic systems, which leads to depolar-

ization, by using the neutron spin-echo (NSE) technique. We

must be aware that in NSE in a magnetic system, two

processes will occur which certainly interfere: (i) the change of

the neutron spin in the scattering process and (ii) the

precession of the neutron spin to encode the scattering effects.

The main principles of NSE in magnetic systems for

inelastic scattering were established by Mezei (1980, 2003).

Two important cases were studied: ‘paramagnetic NSE’ and

‘ferromagnetic NSE’. In ‘paramagnetic NSE’, the intrinsic

feature that the neutron spin is flipped at the very moment of

scattering was exploited. The scattering event operates as a

spin flipper; hence, if one places a paramagnetic sample

instead of a flipper between spin-echo arms, the magnetically

scattered neutrons produce a spin-echo signal. We point out

that without a flipper no signal from non-magnetic scattering

would appear, accounting for the non-monochromaticity of
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real neutron beams. Indeed, even for a beam with ��/� = 0.01,

the statement holds due to the guide fields, which extend over

the setup. Thus, the presence of a signal is unambiguous

evidence of magnetic neutron scattering.

In the case of ‘ferromagnetic NSE’, it is assumed that the

sample depolarizes the neutron beam fully so that the infor-

mation on the precession phase is lost. The same happens if a

high magnetic field is applied at the sample because an

uncontrolled and inhomogeneous amount of Larmor preces-

sion is added. Full depolarization may be avoided if one

maintains the polarization component parallel to the field. The

polarization component perpendicular to the field will be lost.

This gives a 50% reduction of the amplitude. When the system

depolarizes the beam anyway, a so-called ‘intensity-modulated

NSE’ may be used: one polarization component is trans-

formed into an intensity modulation by setting an additional

analyzer just in front of the sample. This intensity modulation

is not affected by the depolarization in the sample. The

polarization is restored by a second polarizer just after the

sample.

‘Paramagnetic NSE’ has been used to study the critical

dynamics of ferromagnets near the phase transition

temperature TC (Mezei, 1982; Pappas et al., 1998) and the

complicated dynamics of spin glass systems (Mezei, 1983;

Pappas et al., 2003). Experiments with ‘ferromagnetic NSE’

have been performed in high magnetic fields up to 7 T in high-

TC superconductors (Boucher et al., 1985).

For magnetic SESANS, the observation of the paramagnetic

SE signal, i.e. the signal obtained from critical fluctuations of

magnetization near TC, is hardly possible, owing to the fact

that this signal is determined by a relatively small neutron

cross section attributed to fluctuations on a large background

of the transmitted beam (see Maleyev, 1982, for details). As

shown below, magnetic SESANS can be applied to ferro-

magnetic samples. In this case, the depolarization caused by

the ferromagnetic structure is not the factor to be avoided but

the phenomenon under study. The magnitude of the SESANS

signal is of the same order, or equal to the value of the

depolarization. The SESANS experiment in a magnetic field is

the subject of forthcoming papers.

This paper is organized as follows. The concept of SESANS

for non-magnetic samples is presented in x2. In x3, we

demonstrate how these principles and formulations can be

modified for magnetic SESANS. x4 gives examples of the

expected SESANS signal for three models of magnetic

systems: (i) a solution of ferromagnetic particles, and (ii) a

layer of ferromagnetic domains on a substrate with domain

magnetization parallel and (iii) perpendicular to the plane of

the substrate. The first experimental results of magnetic

SESANS are presented in x5.

2. Concept of SESANS

The principles of the SESANS technique are described in

detail in a number of papers (Rekveldt, 1996, 2005). It is based

on encoding the neutron fly direction through a precession

device into a unique precession angle, when the device’s front

and end faces are inclined by an angle �0 towards its main axis

(Fig. 1). The polarization after this device is determined by the

precession angle ’:

Pð’Þ ¼ P0 cosð’Þ ð1Þ
with the precession angle

’ ¼ c�BL
sin �0

sinð�0 � �Þ
’ c�BLð1þ � cot �0Þ; ð2Þ

where � is the angle between the fly direction and the main

axis, B is the magnetic field in the precession device, and L its

length.

Two such devices in series with opposite magnetic fields (or

parallel fields and a spin flipper in between) create the

possibility to measure small-angle scattering of a sample

positioned also in between. A sketch of the setup is given in

Fig. 2.

According to equation (2), the net precession angle �’,

after passing the two precession devices at transmission angles

�1 and �2, respectively, is given by

�’ ¼ ’1 � ’2 ¼ c�BL cot �0ð�2 � �1Þ ¼ ZQz; ð3Þ
with

Z ¼ c�2BL cot �0

2�
and Qz ¼

2�

�
ð�2 � �1Þ: ð4Þ

Here Qz is the momentum transfer of the scattering in the z

direction. The quantity Z, which is complementary to Qz,

defines a length called the ‘spin-echo length’. This length can

be scanned by varying the quantities �, B, L or �0.
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Figure 1
A single precession device preceded by the polarizer, a �/2 flipper to
orient the polarization perpendicular to the field B in the precession
device, followed by a second �/2 flipper, a second polarizer and the
detector.

Figure 2
Full spin-echo setup with two precession devices with opposite magnetic
fields that cancel the precession angles of the passing neutron spins
without a sample between the devices. When the sample is present, the
transmission direction changes and the net precession angle departs from
zero. Precessions along different paths are indicated in the upper part.
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The final polarization measured in the detector behind the

analyzer is written as

PmIm ¼ P0Ins þ Ps � Is ð5Þ
where Pm and Im are the measured polarization and the

intensity of the transmitted beam, while P0 and Ins are the

corresponding parameters of the non-scattered part of the

beam. The term Ps � Is is a convolution of the cross section d�/

d�(Q) (probability of scattering) and polarization Ps of the

beam scattered at a certain angle �, corresponding to

momentum transfer Q:

Ps � Is ¼ I0x
1

k2
0

Z
dQy dQz PsðQzÞ

d�

d�ðQÞ ; ð6Þ

where x is the sample thickness, Ps(Qz) = P0cos(QzZ), I0 is the

incident beam intensity, k0 is the wavevector magnitude of the

incident beam, and

� ¼ 1

k2
0

Z
dQy dQz

d�

d�
ðQÞ ð7Þ

is the total cross section. In the single-scattering approxima-

tion (�x� 1), we have Ins = I0(1 � �x) and Im = I0, so the

measured polarization [equation (5)] becomes

Pm ¼ P0ð1� �xÞ þ P0x
1

k0

� �2Z
dQy dQz

d�

d�ðQÞ cosðQzZ1Þ:
ð8Þ

In the single-scattering approximation, we can arrive at the

scattering by a sample of arbitrary thickness by rewriting

equation (8) for a very thin sample of thickness dx as

ðPm � P0Þ
P0

! dP

P

¼ � dx � � 1

k2
0

Z
dQy dQz

d�

d�ðQÞ cosðQzZÞ
� �

;

ð9Þ
showing that the change of the polarization dP/P0 due to the

scattering is proportional to dx. After integrating equation (9)

over the thickness of the sample from 0 to l, we have

Pmðl;ZÞ
P0

¼ exp �l� 1� 1

�k2
0

Z
dQy dQz

d�

d�ðQÞ cosðQzZÞ
� �� �

:

ð10Þ
As was shown by Krouglov et al. (2003a), the second term in

the argument of the exponent is the projection of the spatial

pair correlation function along the propagation axis of the

neutron beam. So the measured quantity Pm can be finally

converted into the so-called SESANS correlation function

G(Z), which for isotropic samples is

GðZÞ ¼
Z

dxh�ðrÞ�ðrþ ZÞi ¼ 1

k2
0

Z
dQy dQz

d�

d�ðQÞ cosðQzZÞ;
ð11Þ

where �(r) is the scattering potential at point r.

3. Magnetic SESANS

The central feature to be taken into account in magnetic

SESANS is the change of the polarization at the very point of

scattering. For ferromagnetic samples, the polarization Ps of

the scattered neutrons is given by (Izyumov & Ozerov, 1970)

Ps ¼ 2m?ðm? � P0Þ � P0; ð12Þ

where m? = m� ðm � q̂qÞq̂q, in which q̂q is the unit scattering

vector and m is the unit magnetization vector, and P0 is the

polarization just before the scattering. The last equation shows

that for neutrons scattered at q ? m, the polarization

component parallel to the local magnetization P0k remains

unchanged in the scattering process, while the component

perpendicular to it, P0?, changes its sign. In this case, there is

in principle no polarization loss (at least in the single-scat-

tering approximation) as occurs in the paramagnetic scat-

tering, where Ps = �q̂qðq̂q � P0Þ. The polarization in the SE

technique is always a vector rotating in the plane perpendi-

cular to the guide magnetic field and hence it can be set in a

position desired by the experimentalist. The local magnetiza-

tion in the sample is a vector with an arbitrary direction. The

consideration of all nine possibilities (three components of

magnetization � three precession planes of polarization) is

very similar to the three-dimensional analysis of the depolar-

ization (Rekveldt, 1973). Such a consideration is beyond the

scope of this paper and we restrict ourselves to the demon-

stration of magnetic SESANS in its simplest form. The full

three-dimensional analysis for magnetic SESANS will be

published elsewhere.

Thus, for ferromagnetic scattering it is easy to find experi-

mental conditions by which the polarization is fully flipped in

the scattering process. For example, we consider the situation

when the local magnetization is directed along the propaga-

tion axis x and the polarization is in the plane (xz) (Fig. 2). As

a consequence, to observe the NSE signal, a flipper between

the spin-echo arms is not needed. Therefore, by switching on

or off the flipper, one can separate the magnetic scattering

from other contributions, in particular, from the nuclear one

and from the unscattered beam.

Then we can rewrite equation (8) for magnetic SESANS as

ImPm ¼ P0I0 cosð’1 þ ’2Þð1� �xÞ
� I0P0x

k2
0

Z
dQy dQz

d�

d�ðQÞ cosð’2 � ’1Þ: ð13Þ

The first term is the non-scattered part of the beam. The

precessions in both precession devices add, so no NSE will be

produced. Since
R

d� ��ð�Þ cos½’1ð�Þ þ ’2ð�Þ� = 0, this term

vanishes. Here �� is the spectral density of the neutron beam.

It should be noticed that the neutron beam is not mono-

chromatic, as occurs in reality.

Considering the second term: after the flipping action of the

magnetic scattering, the term cosð’2 � ’1Þ is in echo for the

neutrons magnetically scattered forward. Finally, equation

(13) can be rewritten as
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ImPm ¼ �
I0P0x

k2
0

Z
dQy dQz

d�

d�ðQÞ cosðQzZÞ

¼ � I0P0x�GðZÞ; ð14Þ

where we used equation (3) to express ’1 � ’2 in Z, with the

G(Z) function given as

GðZÞ ¼
Z

dx h�mðrÞ�mðrþ ZÞi

¼ 1

�k2
0

Z
dQy dQz

d�

d�ðQÞ cosðQzZÞ; ð15Þ

where �mðrÞ is the magnetic scattering potential.

For multiple scattering, one should realise that for magnetic

scattering, the second scattering event reverses the polariza-

tion. In this case, the term describing that the neutron is

scattered twice must be subtracted from the single-scattering

process. Accounting for double, triple, etc. scattering, we

rewrite equation (14) as

Pm ¼ P0GðZÞ x� � ðx�Þ
2

2
þ ðx�Þ

3

2 � 3 � . . .

� �
¼ P0GðZÞðx�Þ expð�x�Þ: ð16Þ

Thus the measured polarization Pm is proportional to the

function G(Z) and multiple scattering now appears as the

factor expð�x�Þ. Equation (16) shows that the amplitude of

the NSE signal is a function of the normalized thickness x� =

x/lf of the sample: Fðx�Þ = ðx�Þ expð�x�Þ. This function is

plotted in Fig. 3. Its maximum occurs at x� = 1 and is equal to

1/e. It is the absolute maximum of the NSE signal which can be

reached in magnetic SESANS.

For magnetic scattering, it is rather simple to normalize the

amount of scattering. According to Maleyev (Maleyev &

Ruban, 1972; Maleyev, 1982) the depolarization of the trans-

mitted beam, which is not in spin-echo mode, is a measure for

the total magnetic cross section:

Pm=P0 ¼ expð�l�Þ ¼ exp �l
1

k2
0

Z
dQy dQz

d�

d�ðQÞ
� �

; ð17Þ

where the initial polarization P0 is parallel to the incident

beam.

4. Model systems

4.1. Spherical magnetic particles

We consider the scattering from a system of ferromagnetic

spherical non-interacting single domain (i.e. uniformly

magnetized) particles with radius R, as, for example, in a

ferrofluid. The correlation function of such a particle is known

analytically and its projection according to the SESANS

technique, G(Z), has been calculated by Krouglov et al.

(2003b). In full analogy with the result given by Krouglov et al.,

it reads

GðZÞ ¼ l�G0ðZÞ; ð18Þ

where the function G0ð�Þ is given by
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Figure 3
The amplitude of the spin-echo signal is a function of the thickness x of
the sample normalized by the mean free path lf = 1/�: F(x�) =
(x�)exp(�x�).

Figure 4
Polarization as a function of spin-echo length Z: (a) for a system of
magnetic spherical Ni particles with radius 500 nm, volume concentration
30% and sample thickness 1 mm; (b) for a system of cylindrical domains
with radius 500 nm and length 104 nm, oriented along the neutron beam.
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G0ð�Þ ¼ 1� �

2

� �2
" #1=2

1þ 1

8
�2

� �

þ 1

2
�2 1� �

4

� �2
" #

ln
�

2þ ð4� �2Þ1=2

� �
; ð19Þ

in which � = Z/R for 0 < � < 2, and l is the thickness of the

sample. The total scattering probability is:

� ¼ 3

2
�V�

2
p�

2R; ð20Þ

where �V is the volume concentration, � is the neutron

wavelength, and �p = Np is the magnetic scattering potential

(with N the number of atoms per unit volume and p the

magnetic scattering length).

Using equations (16), (18)–(20), we calculated the possible

polarization signal from a solution (30%) of Ni particles (Np =

1.46 � 10�4 nm�2) with R = 500 nm for � = 0.2 nm and sample

thickness l = 1 mm. The result is shown in Fig. 4(a).

4.2. Ferromagnetic layer on a substrate

We consider two cases: (i) ‘easy plane’, i.e. the magnetiza-

tion vector is in the plane; and (ii) ‘hard plane’, i.e. the

magnetization vector is perpendicular to it.

In easy plane we suppose a magnetic domain structure

consisting of strips, magnetized parallel or antiparallel to the

in-plane easy axis. The thickness of a strip is equal to the

ferromagnetic layer thickness; its length is much longer than

the thickness. This is a quasi-periodic one-dimensional struc-

ture like a grating. If we orient these strips with their length

parallel to y, their width dz in the gradient precession direction

(sensitive direction, z) and their thickness dx parallel to the

neutron beam, we can calculate the scattering cross section for

this structure in analogy to Bouwman et al. (2004b). The total

scattering fraction is

�l ¼ l
1

k2
0

Z
dQy dQz

d�ðQy;QzÞ
d�

¼ ðndxdydzÞð2�p�dxÞ2

� �Vð2�p�dxÞ; ð21Þ
where n is the domain density and again �p is the magnetic

scattering length density and �V the volume fraction. For G(Z)

of such a one-dimensional structure, one expects to find the

autocorrelation function of the density profile along the

sensitive direction. For this model, it is the autocorrelation

function of a rectangular domain, which has a triangular shape

with a base width twice the width of a domain.

The hard plane model is a stack of cylinders with radius R

and length l oriented perpendicular to the plane, i.e. a two-

dimensional structure. The correlation function of such a long

particle (oriented by its long dimension along the incident

beam) can be given analytically and the corresponding

projection of this function in the SESANS technique is a

product of this function and the normalized thickness l�:

GðZÞ ¼ l�G0ðZÞ; ð22Þ
where

G0ð�Þ ¼
1

�
f2 arccosð�Þ � sin½2 arccosð�Þ�g; ð23Þ

in which � = Z/(2R) for 0 < � < 2. The total scattering prob-

ability is given by

� ¼ �
2
�V�

2�2l; ð24Þ

where again �V is the volume concentration and �p the

magnetic scattering potential. Equations (22)–(24) are derived

in the approximation of non-interacting particles, i.e. r 	 R.

This approximation fails for the real system, naturally, where

neighbouring domains are correlated in the range r 
 R; it

remains valid for r 	 R.

Using equations (16), (22)–(24), we calculated the possible

signal from a hypothetical ferromagnetic Ni layer (Np = 1.46

� 10�4 nm�2) with thickness 104 nm and domain size 1000 nm;

� = 0.2 nm. The result is shown in Fig. 4(b), where the polar-

ization is plotted as a function of spin-echo length, Z. Fig. 4

demonstrates that the correlation functions of the spherical

particle and the cylinder-like particle are different and this

difference could be clearly detected in the SESANS experi-

ment.

5. Experiment

To illustrate the possibilities that SESANS presents for the

investigation of magnetic materials, we applied this technique

to study a ferromagnetic Ni layer, of 15 mm thickness, on a

copper substrate. The domain structure of the sample corre-

sponds to the hard-plane model described in x4. The magne-

tization in the domains is directed perpendicular to the layer;

the domain length coincides with the thickness of the layer

(15 mm); the width (‘spaghetti’ thickness) is of order of 3 mm.

This structure was named a ‘spaghetti’ domain structure. The

magnetic structure of such a Ni layer had been studied long

ago by neutron depolarization analysis (Kraan & Rekveldt,

1977), which was repeated for this particular sample. The

‘spaghetti’ domain structure describes the neutron depolar-

ization results as a function of transmission angle very well.

We used the SESANS instrument at IRI in Delft (Rekveldt

et al., 2005), shown schematically in Fig. 5. A set of six pyro-

lytic graphite monochromators (MC) selects a beam with � =

0.21 nm and ��/� = 0.01 from a polychromatic beam from the
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Figure 5
Schematic drawing of the SESANS setup at IRI TU Delft. MC:
monochromator crystal. P: polarizer. R1, R2, R3 and R4: polarization
rotators. M1, M2, M3 and M4: electromagnets. S: sample position. A:
analyzer. D: detector. The system consisting of M1 and M2 is the first arm
of a spin-echo setup; M3 and M4 represent its second arm.
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2 MW reactor. The polarizer P and the analyzer A before the
3He detector D, are sets of supermirrors. The adiabatic �/2-

rotators R1 and R4 turn the polarization from the orientation

parallel to the field in the polarizer and analyzer, into the

plane perpendicular to the magnetic field in the electro-

magnets M1–M4. The basic components that create the

triangular precession regions are 9 mm thick permalloy films

deposited on silicon wafers, positioned at �0 = 5.5� to the

neutron beam at the centre of the rectangular poles of these

electromagnets. Their fields are set and controlled by software

to values usually between 0.5 and 130 mT. The sample S is

mounted between the two SE arms. Two �/2-rotators of

polarization, R2 and R3, are installed around the sample

position in order to set the polarization into the (xz) plane.

Two large Helmholz coils are mounted around both arms as

guide fields of 2 mT to maintain the polarization. All parts are

mounted on an aluminium table to avoid magnetic disturbance

of the surroundings of the neutron path.

Fig. 6(a) shows the polarization measured as a function of

the parameter Z for the ‘nuclear’ mode. In this mode, the

magnetic field reverses between magnets M2 and M3 by using

a field stepper and the nuclear SESANS correlation function is

measured. We see no variation of P, demonstrating the

absence of nuclear inhomogeneities in the sample. Due to

magnetic scattering, the level of the polarization is equally

suppressed for all Z. According to equation (17), this depo-

larization gives the total magnetic scattering.

Fig. 6(b) shows the polarization for the ‘magnetic’ mode.

For this mode, the sign of the field was not actually reversed,

but we arranged an adiabatic transition between M2 and M3

that compensates the action of the field reversal. The polar-

ization shows a damped oscillating behaviour as a function of

Z with a minimum at Z = 3 mm and a maximum at Z = 6 mm.

This implies the presence of correlations between neigh-

bouring domains with characteristic size 3 mm. The linear

character of the dependence P(Z) at small Z (<2 mm) confirms

the calculation made for the hard-plane model in x4.2. For

comparison, we also plot the polarization in the ‘magnetic’

mode without sample. As expected, it is close to zero because

the precessions in both arms add, since the spin flip during a

magnetic scattering event is absent. For the beam with ��/� =

0.01, the condition that the total phase ’1 + ’2 > 100� must be

fulfilled for full suppression of the SE signal. This inequality

holds even for the guide field between the magnets, of the

order of 2 mT, which extends over the entire setup (length

5 m). This guide field produces one sense of precession and is

strong enough to make the SE signal vanish. The question

arises: is there a possibility that the observed signal in the

‘magnetic mode’ is actually due to the fact that the ferro-

magnetic Ni film is acting as an (imperfect) spin flipper? We

estimated the possible precession of the polarization of a

neutron beam with wavelength 0.2 nm inside a Ni layer of

thickness 15 mm: �’ ’ 0.1, which is much less than � neces-

sary for the spin flip. Thus, we conclude that this ferromagnetic

film does not act as an imperfect spin flipper, but we are

dealing with magnetic scattering at very small angles.

Finally, the measured polarization with the sample is higher

than without it: this is a direct proof of the validity of equation

(12) and the concept of magnetic SESANS. Similar curves

were observed in non-magnetic SESANS experiments with

dense colloids (Krouglov et al., 2003b), where the correlation

between particles becomes important.

6. Conclusion

In this paper we have reviewed the SESANS technique and

pointed out that the projection of the pair correlation function

along the beam axis is obtained with this technique. We have

demonstrated that SESANS, hitherto applied to numerous

non-magnetic systems, can also be applied to magnetic

samples. We are helped by fact that the polarization is flipped

in the magnetic scattering process, which eliminates the need

for the usual � flipper to observe spin echo. Hence, by taking

measurements with and without a flipper from the same

sample, magnetic and nuclear modes of scattering can be

separated in a trivial way. The formalism for magnetic

SESANS is similar to that for non-magnetic SESANS, except

for the correction for multiple scattering. As an example, we

studied a Ni layer electrodeposited on copper, which had

previously been characterized by three-dimensional depolar-

ization analysis.
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Figure 6
Polarization measured as a function of the spin-echo length Z for the
‘nuclear’ (a) and ‘magnetic’ (b) modes (see the text for details).
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Comparison of this new technique with the well known

depolarization analysis suggests that the new technique gives

information that is complementary to neutron depolarization.

The new technique gives the profile of the pair correlation

function and one of its characteristics, a magnetic correlation

length. This information is model independent and does not

rely on knowledge of the magnetization (as a function of

temperature) of the system, as in depolarization analysis. This

presents new possibilities for the investigation of magnetic

phase transitions.

In summary, the old idea to resolve magnetic scattering

within the direct beam is nowadays realisable.

SG thanks the NWO for a grant, which enabled him to

perform this work in the Faculty of Applied Science of TU

Delft. The work was partly supported by the INTAS founda-

tion (Grant No. INTAS-03-51-6426), RFFR (project 05-02-

16558) and Project No. S-1671.2003.2. The research project

has been partially supported by the European Commission

under the 6th Framework Programme through the Key

Action: Strengthening the European Research Area,

Research Infrastructures. Contract No. RII3-CT-2003-505925.

References

Boucher, J. P., Mezei, F., Regnault, L. P. & Renard, J. P. (1985). Phys.
Rev. Lett. 55, 1778–1781.

Bouwman, W. G., Krouglov, T. V., Plomp, J., Grigoriev, S. V., Kraan,
W. H. & Rekveldt, M. Th. (2004a). Physica B, 350, 140–146.

Bouwman, W. G., Krouglov, T. V., Plomp, J. & Rekveldt, M. Th.
(2004b). Physica B, 357, 66–72.

Izyumov, Y. A. & Ozerov, R. P. (1970). Magnetic Neutron Diffraction,
pp. 171–176. New York: Plenum.

Kraan, W. H. & Rekveldt, M. Th. (1977). J. Magn. Magn. Mater. 5,
247–257.

Krouglov, T., de Schepper, I. M., Bouwman, W. G. & Rekveldt, M. Th.
(2003a). J. Appl. Cryst. 36, 117–124.

Krouglov, T., Bouwman, W. G., Plomp, J., Rekveldt, M. Th., Vroege,
G. J., Petukhov, A. V. & Thies-Weesie, D. M. E. (2003b). J. Appl.
Cryst. 36, 1417–1423.

Maleyev, S. V. (1982). J. Phys. C, 7, 23–26.
Maleyev, S. V. & Ruban, V. A. (1972). Zh. Eksp. Teor. Fiz. 62, 416–

422 [Sov. Phys. JETP (1972), 35, 222].
Mezei, F. (1980). Neutron Spin Echo, in Lecture Notes in Physics, Vol.

128, pp. 3–26. Berlin: Springer-Verlag.
Mezei, F. (1982). Phys. Rev. Lett. 49, 1096–1099.
Mezei, F. (1983). J. Magn. Magn. Mater. 31–34, 1327–1330.
Mezei, F. (2003). Neutron Spin Echo, in Lecture Notes in Physics, Vol.

601, edited by F. Mezei, C. Pappas & T. Gutberlet, pp. 5–14. Berlin:
Springer-Verlag.

Okorokov, A. I., Runov, V. V. & Gukasov, A. G. (1978). Nucl.
Instrum. Methods, 157, 487–493.

Pappas, C., Alba, M., Brulet, B. & Mezei, F. (1998). Physica B, 241–
243, 594–596.

Pappas, C., Mezei, F., Ehlers, G., Manuel, P. & Campbell, I. A. (2003).
Phys. Rev. B, 68, 054431–054435.

Rekveldt, M. Th. (1973). Z. Physik. 259, 391–410.
Rekveldt, M. Th. (1996). Nucl. Instrum. Methods B, 114, 366–370.
Rekveldt, M. Th., Bouwman, W. G., Kraan, W. H., Uca, O., Grigoriev,

S. V., Habich, K. & Keller, T. (2003). Neutron Spin Echo, in Lecture
Notes in Physics, Vol. 601, edited by F. Mezei, C. Pappas & T.
Gutberlet, pp. 87–99. Berlin: Springer.

Rekveldt, M. Th., Plomp, J., Bouwman, W. G., Kraan, W. H.,
Grigoriev, S. & Blaauw, M. (2005). Rev. Sci. Instrum. 76, 033901
(1–9).

research papers

258 Sergey V. Grigoriev et al. � Magnetic samples J. Appl. Cryst. (2006). 39, 252–258

electronic reprint


