НЕЙТРОННОЕ РАССЕЯНИЕ ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ

Зимняя школа ПИЯФ Малеев С.В.

С чем мы имеем дело в физике конденсированного состояния?

Расстояния: $0.1nm \div > 1\mu m$

Энергии: $1\mu eV \div 100meV(1meV = 11.62K = 8.071cm^{-1} = 8.645T)$

Нейтроны: Длина волны $\lambda = 2\pi/k = 0.01nm \div 3nm$.

Энергия: $E = 300 meV \div 0.3 \mu eV$

В опытах по рассеянию интересен размер изучаемого объекта. Он характеризуется величиной, обратной переданному при рассеянии импульсу: $R \sim 1/Q$; $Q = |\vec{k}_i - \vec{k}_f|$ где

 k_i и k_f импульсы нейтрона до и после рассеяния.

Q меняется в пределах $(10^{-1} \div 10^{-5})nm^{-1}$.

ЯДЕРНОЕ РАССЕЯНИЕ

В общем случае амплитуда нейтрон-ядерного рассеяния равна

$$f = a + b(\vec{J} \bullet \vec{s})$$

где \vec{j} и \vec{S} спины ядра и нейтрона соответственно, а и b константы порядка $10^{-13} \, cm$.

Спин-зависящая часть амплитуды для неполяризованных ядер обычно не существенна (исключение-водород). Мы ее рассматривать не будем. Сечение рассеяния на одном ядре $d\sigma/d\Omega = |a|^2$, а полное сечение $\sigma = 4\pi |a|^2$.

Нас интересует система ядер,и мы должны учитывать интерференцию возникающую при рассеянии на разных ядрах. Соответствующая амплитуда

$$F(\vec{Q}) = \sum a_l e^{i\vec{Q}\vec{R}_l}$$
 где 1 нумерует ядра \vec{R}_l их координаты,

 $\vec{Q} = \vec{k_i} - \vec{k_f}^l$ импульс переданный нейтроном рассеивателю.

Для дальнейшего анализа необходимо сделать те или иные предположения о свойствах системы.

Три класса веществ:

- •Аморфные вещества (стекла); Атомы колеблются вокруг случайных позиций.
- •Газы и жидкости; Атомы случайно блуждают.
- •Мы здесь ограничимся кристаллами

УПРУГОЕ РАССЕЯНИЕ В КРИСТАЛЛАХ

Кристалл состоит из одинаковых элементарных ячеек, содержащих несколько ($\nu \ge 1$) атомов, совмещающихся друг с другом при сдвижке на один или несколько основных периодов решетки: $\vec{a}, \vec{b}, \vec{c}$.

Другими словами, если забыть о границах, кристалл переходит сам в себя про сдвиге на вектор решетки

$$\vec{R} = g\vec{a} + h\vec{b} + k\vec{c}$$
, где g, h, k целые числа.

В результате амплитуду рассеяния можно представить

в виде
$$F(\vec{Q}) = \sum_{\vec{p}} e^{i\vec{Q}\vec{R}} f(\vec{Q}); \quad f(\vec{Q}) = \sum_{\nu} a_{\nu} e^{i\vec{Q}\vec{r}_{\nu}}$$

Где $f(\vec{Q})$ называют структурным фактором кристалла, он не зависит от \vec{R} .

ОБРАТНАЯ РЕШЕТКА

Сумма по узлам решетки $\sum e^{i\vec{Q}\vec{R}}$ обладает свойством : Если $\vec{Q} = m\vec{b}_1 + n\vec{b}_2 + l\vec{b}_3 = \vec{K}$, где m,n,l целые числа $\vec{b}_1 = 2\pi[\vec{b} \times \vec{c}\,]/V; \vec{b}_2 = 2\pi[\vec{c} \times \vec{a}\,]/V; \vec{b}_3 = 2\pi[\vec{a} \times \vec{b}\,]/V,$ $V = (\vec{a}[\vec{b} \times \vec{c}\,])$ объем элементарной ячейки ,

то для всех \vec{R} $\vec{Q}\vec{R} = 2\pi \times$ целое число и сумма равна полному числу $N \longrightarrow \infty$ ячеек в кристалле.

Если же \vec{Q} даже слегка отличается от \vec{K} то разные члены суммы имеют разные знаки и она равна НУЛЮ.

Совокупность векторов \vec{K} со всеми m, n, l образуют ОБРАТНУЮ решетку кристалла.

Таким образом упругое рассеяние имеет место только при \vec{Q} равном векторам обратной решетки.

Соответствующие направления называются

Брэгговскими пиками.

Обычно делают замену, верную при N >> 1.

$$\frac{1}{N} \sum e^{i\mathbf{Q} \cdot \mathbf{R}} \to \frac{(2\pi)^3}{V} \delta(\mathbf{Q} + \mathbf{K})$$

и для упругого рассеяния нормированного на одну элементарную ячейку получаем

$$\frac{d\sigma}{d\Omega} = \frac{(2\pi)^3}{V} |f(\mathbf{Q})|^2 \delta(\mathbf{Q} + \mathbf{K})$$

3десь $|f(\mathbf{Q})|^2$ определяет интенсивность Брэгговского пика.

Может оказаться, что для некоторых пиков $|f(\mathbf{K})|^2 = 0$

Такие рефлексы называются запрещенными.

УСЛОВИЕ БРЭГГА

Из равенства $\vec{Q} = \vec{k}_i - \vec{k}_f = -\vec{K}$ и упругости рассеяния $k_i = k_f$ следует $\vec{K}\vec{k}_i = -K^2/2$ или $\cos \Psi = -K/2k_i$,

Где Ψ угол между направлением пучка и вектором обратной решетки. Поэтому K отражение может наблюдаться только если $k_i > K/2$.

Длина минимального вектора обратной решетки

$$K_{\min} = 2\pi/a_{\max}$$

где a_{\max} максимальный основной вектор решетки.

Поэтому если
$$k_i < \pi / a_{\text{max}} \ (\lambda > 2a_{\text{max}})$$

Брэгговское рассеяние невозможно.

Интенсивность Брэгговского пика Интеграл $\int d\Omega \delta(\vec{k_i} - \vec{k_f} + \vec{K})$ расходится. Интенсивность в пике порядка числа ячеек N.

Можно показать, что угловая ширина пика порядка $N^{-1/3}$. Поэтому полная интенсивность рассеяния элементарной ячейкой порядка $N^{1/3}$, а всем кристаллом $N^{4/3}$. В действительности это не так по двум причинам:

- •Обычно угловая ширина пучка больше, чем $N^{-1/3}$ и не все нейтроны рассеиваются.
- •Монокристалл состоит из слегка разориентированных блоков (кристаллитов).

Теория не описывает рассеяние в идеальных кристаллах.

В этом случае работает теория динамической дифракции.

РАССЕЯНИЕ В ПОЛИКРИСТАЛЛАХ

Поликристаллы и порошки состоят из мелких произвольно ориентированных кристаллов и надо усреднить сечение Брэгговского рассеяния по всем их ориентациям. В результате

$$\frac{\overline{d\sigma}}{d\Omega} = \frac{2\pi}{VK^2} \overline{|f(\mathbf{Q})|^2} \delta(Q - K)$$

Теперь условие Брегга выглядит проще $Q=2k_{in}\sin\theta/2=K$, где θ угол рассеяния.

Таким обрезом картина рассеяния-это круги с радиусами определяемыми длинами векторов К Полное сечение имеет вид $\sigma_K = \frac{4\pi^2 n}{VKk_{in}}\overline{|f(\mathbf{Q})|^2}$

где n число векторов с длиной K.

КОЛЕБАНИЯ РЕШЕТКИ

Атомы в кристаллах колеблются вокруг равновесных позиций. Обычно это малые, гармоническии колебания.

Исключения: Окрестности структурных переходов и колебания в кристаллах изотопов гелия.

С учетом колебаний $\vec{R}_l \rightarrow \vec{R}_l + \vec{u}_l; <\vec{u}_l >= 0.$

Возникает два явления:

- 1. Уменьшение интенсивности Брэгговских пиков.
- 2. Неупругое рассеяние.

В гармоническом приближении колебания описываются с помощью квазичастиц, фононов, характеризующихся

$$\mathbf{K}$$
вазиимпульсом $\mathbf{q} = \mathbf{q} + \mathbf{K}$ $\mathbf{q} = \mathbf{q} + \mathbf{K}$

Поляризациями $e_j(\mathbf{q}) = e_j(\mathbf{q} + \mathbf{K})$

Вектор **Q** лежит в первой зоне Бриллуэна

$$-b_i/2 < q_i < b_i/2; i = 1, 2, 3.$$

Всего имеется 3ν фононных мод(ветвей спектра): Различают три акустические ветви, одну продольную и две поперечных, описывающих совместные колебания соседних ячеек Для них $\omega(\vec{q}) \sim q$.

Оптические ветви это колебания атомов относительно друг друга в одной ячейке и $\omega(0) \neq 0$.

Нейтроны неупруго рассеиваются с испусканием или поглощением одного фонона (многофононные процессы малы).

Законы сохранения
$$\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_f = -\mathbf{K} \pm \mathbf{q}; \quad \omega = E_i - E_f = \pm \omega_i(\mathbf{q}).$$

Испускание

Поглощение

Появление вектора обратной решетки **K** называется процессом переброса, благодаря которому около каждого Брэгговского пика имеется неупругое рассеяние..

Законы сохранения позволяют изучать дисперсию фононов $\omega_j(\mathbf{q})$:Фиксируя \mathbf{Q} измерять зависимость от переданной энергии ($\boldsymbol{\omega}$ -скан) или,фиксируя переданную энергию измерять зависимость от \mathbf{Q} (\mathbf{Q} -скан).

Как вычислить сечение нупругого рассеяния?

Вектор смещения это сумма по всем модам

$$\mathbf{u}_{\nu}(\mathbf{R}) = \sum_{\mathbf{q},j} \sqrt{\frac{1}{2NM\omega(\mathbf{q},j)}} e^{i\mathbf{q}\mathbf{R}} \mathbf{e}_{j}^{\nu}(\mathbf{q}) (c_{\mathbf{q},j} + c_{-\mathbf{q},j}^{+}) \quad \mathbf{M} \text{ масса ячейки}$$

Оператор c^+ рождает фонон, с-уничтожает:

$$< n+1|c^+|n>=n+1;< n-1|c|n>=n,$$
 где n число фононов.

$$\frac{d\sigma}{d\Omega E_f} = \frac{|\mathbf{Q}\mathbf{e}_j(\mathbf{q})|^2}{2M\omega_{j,\mathbf{q}}} |f(\mathbf{Q})|^2 \frac{k_f}{k_i}$$

$$\begin{cases} (N_{j,\mathbf{q}}+1)\delta(E_i-E_f-\omega_{j,\mathbf{q}}), & \text{emission;} \\ N_{j,\mathbf{q}}\delta(E_i-E_f+\omega_{j,\mathbf{q}}), & \text{absorbtion;} \end{cases}$$

$$N_{j,\mathbf{q}} = \frac{1}{\frac{\omega_{j,\mathbf{q}}/T}{2}} \text{ функция Планка,...}$$

ЗАМЕЧАНИЯ:

- 1. Реально фононы имеют конечное время жизни и дельтафункции слегка размазаны, однако, как правило точность эксперимента недостаточна для для измерения этого времени.
- 2. Сечение увеличивается с ростом переданного импульса. Вреде случаев это позволяет отличить фононное рассеяние от магнитного, уменьшающегося с ростом О

ТЕПЛОВОЙ ФАКТОР ДЕБАЯ_ВАЛЛЕРА

Колебания атомов уменьшают сечение упругого рассеяния. Это описывается введением в структурный фактор дополнительного множителя

$$f(\mathbf{Q}) = \sum_{\nu} a_{\nu} e^{i\mathbf{Q}\mathbf{r}_{\nu}} \to \sum_{\nu} a_{\nu} e^{i\mathbf{Q}\mathbf{r}_{\nu} - W_{\nu}}$$

$$W_{\nu} = \sum_{\nu} \frac{|\mathbf{Q}\mathbf{e}_{j}^{\nu}|^{2}}{2NM\omega_{j,\mathbf{q}}} (N_{j,\mathbf{q}} + 1/2)$$

Из за нулевых колебаний $W \neq 0$ и при T=0.

В кубических кристаллах $W \sim Q^2$, в тетрагональных

$$W = Q_{||}^2 W_{||} + Q_{\perp}^2 W_{\perp}$$
 ит.д.

МАГНИТНОЕ РАССЕЯНИЕ

Магнитное рассеяние является результатом взаимодействия магнитных моментов нейтрона и ионов Амплитуда рассеяния

$$F_M(\mathbf{Q}) = r \sum e^{i\mathbf{Q}\mathbf{R}_m} f_M(\mathbf{Q}) [(\mathbf{M}_m \sigma) - (\mathbf{M}_m \mathbf{e})(\mathbf{e}\sigma)]$$

3десь $r=5.4\times 10^{-13} cm, \vec{S}=\sigma/2$ спин нейтрона. \mathbf{R}_m координаты ионов, $f(\mathbf{Q})$ его форм-фактор.

Момент иона
$$\mathbf{M}_m = \begin{cases} \mathbf{S}_m, & d-ions; \\ \mathbf{J}_m, & f-ions. \end{cases}$$

 $\mathbf{e} = \mathbf{Q}/Q$ единичный вектор вдоль переданного

ОСНОВНЫЕ ОСОБЕННОСТИ

$$1.f_M(Q), f_M(0) = 1$$
и убывает при $Q > 1/R_I$ где R_I радиус иона.

2. Амплитуда пропорциональна спину нейтрона. Поэтому имеют место явления связанные с его поляризацией

$$\mathbf{P} = \langle \vec{\sigma} \rangle$$
.

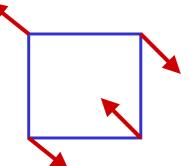
Сечение может зависеть от **Р.** Поляризация может возникать и поворачиваться при рассеянии.

3. Амплитуда содержит только перпендикулярные переданному импульсу компоненты магнитных моментов ионов. Эта перпендикулярность остается и пределе $Q \to 0$. и является следствием дальнодействия магнитного взаимодействия

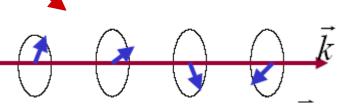
МАГНИТНЫЕ СТРУКТУРЫ

Существует огромное количество магнитных структур, исследуемых с помощью нейтронов. Классиком в их расшифровке является J.Brown. Как иллюстрацию мы рассмотрим простейшие.

Ферромагнетики, все спины параллельны.



Антиферромагнетики, соседние спины антипараллельны.



Магнитные спирали. Спины вращаются направо или налево в направлении вектора $\mathbf{\kappa}$. Период вращения $2\pi/k >> a$, где а постоянная решетки.

УПРУГОЕ РАССЕЯНИЕ, ФЕРРОМАГНЕТИКИ

Магнитная решетка совпадает с ядерной и в случае одного атома в ячейке (железо) для фиксированного вектора **К**

$$a \rightarrow a + r f_M(\mathbf{K})[(\mathbf{S}\sigma) - (\mathbf{S}\mathbf{K})(\mathbf{K}\sigma)/K^2]$$

В результате в сечении вместо a^2 стоит множитель

$$a^{2} + 2arf_{M}(\mathbf{K}) \left[(\mathbf{SP}_{0}) - \frac{(\mathbf{SK})(\mathbf{KP}_{0})}{K^{2}} \right] + r^{2}f_{M}^{2}(\mathbf{K}) \left[\mathbf{S}^{2} - \frac{(\mathbf{SK})^{2}}{K^{2}} \right]$$

Второе слагаемое это интерференция ядерного и магнитного рассеяния, а трете-чисто магнитное.В ненамагниченном образце интерференция исчезает а последняя скобка равна 2/3.

Если S | К то магнитный вклад исчезает как и надо.

ПОЛЯРИЗАЦИЯ ПРИ РАССЕЯНИИ

Рассмотрим опять амплитуду

$$a + r f_M(\mathbf{K})[(\mathbf{S}\sigma) - (\mathbf{S}\mathbf{K})(\mathbf{K}\sigma)/K^2]$$

Пусть для нейтронов например со спином вниз (-) эта сумма равна нулю. Они не рассеиваются, а амплитуда рассеяния со спином вверх (+) равна 2a.

В результате поляризация нейтронов рассеянных со спином вверх $\sigma - \sigma$

спином вверх
$$P_{+} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = 1,$$

где σ_{\pm} соответствующие сечения.

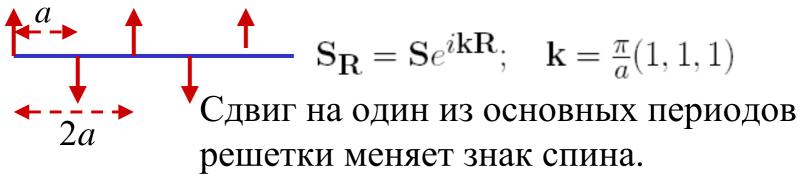
Это старый способ поляризации нейтронов.

Пример: отражение (220) в магнетите Fe_3O_4 .

Эта поляризация является результатом интерференции ядерного и магнитного рассеяния, возможной благодаря совпадению обоих структур. Если структуры различны — интерференция невозможна. Однако есть другой канал возникновения поляризации: спиновая киральность, или другими словами винтовая структура

УПРУГОЕ РАССЕЯНИЕ, АНТИФЕРРОМАГНЕТИКИ

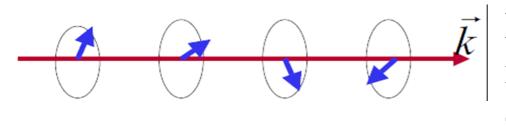
Рассматривается классический дух подрешеточный антиферромагнетик. Период магнитной структуры в два раза больше, чем ядерной



Векторы обратной магнитной решетки $\mathbf{K}_A = \mathbf{K} + \mathbf{k}$ не совпадают с ядерными. Интерференции нет, поляризация не возникает, но при магнитном Брэгговском рассеянии поворачивается на 180° вокруг вектора

$$\mathbf{S}_{\perp} = \mathbf{S} - \frac{(\mathbf{S}\mathbf{K}_A)\mathbf{K}_A}{K_A^2} \qquad \qquad \mathbf{P}_0 \qquad \qquad \mathbf{S}_{\perp}$$

УПРУГОЕ РАССЕЯНИЕ, СПИРАЛИ



Вращение в плоскости перпендикулярной вектору спирали **к.***Ho*, *Dy*, *MnSi*, *FeGe*.

$$\mathbf{S}_{\mathbf{R}} = S(\hat{a}\cos\mathbf{k}\mathbf{R} + \hat{b}\sin\mathbf{k}\mathbf{R}) = (S/2)[(\hat{a} - i\hat{b})e^{i\mathbf{k}\mathbf{R}} + (\hat{a} + i\hat{b})e^{-i\mathbf{k}\mathbf{R}}]; \hat{a} \times \hat{b} = \hat{c}.$$

Две возможности: правя спираль, вектор κ параллелен \hat{c}

левая спираль, вектор к антипараллелен (

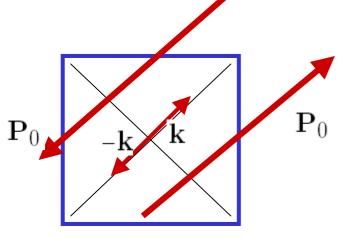
Поляризованные нейтроны позволяют определить тип спирали.

Другие спирали: В мультиферроиках вектор к лежит в плоскости вращения

Если период спирали большой, достаточно рассмотреть рассеяние на малые углы $\vartheta = k / k_i$.

$$\frac{d\sigma}{d\Omega} = \frac{(2\pi)^3 (Sr)^2}{2V} \{ [1 + (\mathbf{P}_0 \mathbf{Q})(\mathbf{Q}\hat{c})] \delta(\mathbf{Q} + \mathbf{k}) + [1 - (\mathbf{P}_0 \mathbf{Q})(\mathbf{Q}\hat{c})] \delta(\mathbf{Q} - \mathbf{k}) \}$$

$$\hat{a} \times \hat{b} = \hat{c}. \text{ это винт!}$$



Пусть $\mathbf{P}_0 \parallel \mathbf{k}$. Правая спираль $\hat{c} \parallel \mathbf{k}$ Первое слагаемое удваивается, второе 0!

Левая спираль $\hat{c} \parallel (-\mathbf{k})$

Первое слагаемое 0!

Меняем знак поляризации-все наоборот.

Энергия кристалла не должна зависеть от направления вращения спирали. Поэтому реальный кристалл должен состоять из правых и левых доменов и зависимость от поляризации отсутствовать. Это так и есть в Dy и Ho.

В $CsMnBr_3$ небольшая зависимость от поляризации была обнаружена и объяснена случайной разницей правых и левых доменов.

В Ho такая разность была достигнута путем охлаждения скрученного образца ниже точки перехода.

ЗАГАДКА ПРИРОДЫ.

В *MnSi* наблюдается только ЛЕВАЯ спираль.

В $Fe_{1-x}Co_xSi$ левая спираль переходит в правую при $x \approx 0.2$.

НЕУПРУГОУ РАССЕЯНИЕ

В магнитоупорядоченных веществах основным возбуждениями являются слабо затухающие квазичастицы спиновые волны или магноны. Их измерения также, как и фононы. Единственное отличие: В законах сохранения надо пользоваться векторами магнитной структуры.

В качестве примера приведем ферромагнетики..

$$\frac{d\sigma}{d\Omega d\omega} = \frac{r^2S|f_M(\mathbf{Q})|^2k_f}{2}\frac{1}{k_i\,1-\exp{(-\omega/T)}}$$
 [$\delta(\omega-\epsilon_{\mathbf{Q}})-\delta(\omega+\epsilon_{\mathbf{Q}})$] где переданная энергия $\omega=E_i-E_f$.

Вблизи от Брзгга $\,\epsilon_{\mathbf{Q}} \sim (\mathbf{Q} - \mathbf{K})^2\,$

Аналогичные формулы есть и в других случаях. Но бывает, что квазичастиц нет. Например выше температуры фазового перехода второго рода. В этом случае вблизи будущих Брэгговских пиков возникают критические флуктуации. Современная теория (скелинг) предсказывает величину характерной энергии этих флуктуаций в зависимости от близости к переходу и расстоянию до Брэгга, но не дает их формы.

В этом случае выражают сечение неупругого рассеяния через мнимую часть магнитной восприимчивости

$$\chi_{\alpha\beta}(\mathbf{Q},\omega) = i \int_{0}^{\infty} dt e^{i\omega t} < [\mathbf{S}_{\mathbf{Q}}^{\alpha}(t), \mathbf{S}_{-\mathbf{Q}}^{\beta}(0)] >$$
$$\alpha, \beta = x, y, z; [A, B] = AB - BA.$$

При Q=0, это обычная магнитная восприимчивость.

Сечение

$$\frac{d\sigma}{d\Omega d\omega} = r^2 |f_M(\mathbf{Q})|^2 \frac{Im\chi_{\alpha\beta}(\mathbf{Q},\omega)(\delta_{\alpha\beta} - \hat{e}_{\alpha}\hat{e}_{\beta})}{1 - e^{-\omega/T}}$$

СПИНОВАЯ КИРАЛЬНОСТЬ

Эта формула для сечения верна, если тензор восприимчивости симметричен $\chi_{\alpha\beta}=\chi_{\beta\alpha}$

Если есть антисимметричная часть

$$\chi_{\alpha\beta} = \chi_{\alpha\beta}^S + \chi_{\alpha\beta}^A; \quad \chi_{\alpha\beta}^A = -i_{\alpha\beta\gamma} \mathbf{C}_{\gamma}$$

С вектор киральности. Киральное сечение

$$\left[\frac{d\sigma}{d\Omega d\omega}\right]_C = r^2 |f_M(\mathbf{Q})|^2 \frac{2(\mathbf{P}_0 \hat{e})(\hat{e}Im\mathbf{C}(\mathbf{Q}, \omega))}{1 - e^{-\omega/T}}$$

Оно появляется если есть винт: магнитное поле (намагниченность), спираль, вектор Дзялошинского.

Моя лекция в прошлом году.