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Abstract. – A polarised neutron beam is passed through a gradient resonance flipper. By
the amplitude of their RF field, such flippers can be set at flip probability ρ = 0, 1, or 1

2
. At

1
2
, the neutron wave splits into a flipped and a non-flipped part with different precession. We

measure the polarisation after a spin-echo (SE) setup with each precession arm made up of
2 such flippers. Offset from SE is made by varying the static fields in one flipper while the
other flippers stay unchanged. This shows up as a periodic behaviour of the polarisation. With
incoming polarisation parallel to the static field in the flippers —set at ρ = 1

2
— this period

is twice the period measured for both ρ = 0 and 1 and with polarisation perpendicular to the
static field. In the latter experiments both components of the spinor are affected, whereas in
the former experiment we create spin states in which only one spinor component in one state
is affected. Hence, this experiment demonstrates explicitly the 4π-periodicity of the spinor.

Introduction. – Larmor precession of the polarisation of a neutron beam in a magnetic
field can be described by means of specific changes in the spinor, i.e. a normalised vector in
2-dimensional space with complex components:

|ψ〉 =
(
a exp[iφ1]
b exp[iφ2]

)
= a exp[iφ1]

(
1
0

)
+ b exp[iφ2]

(
0
1

)
, (1)

where the phases φ1 and φ2 characterise the spinor in its initial form. (Their value is irrelevant,
since our interest concerns the change in these phases.) From this spinor the components Si

(i = x, y, z) of the average spin (=polarisation) are calculated according to Si = 〈ψ|σi|ψ〉,
where σi is the component i of the Pauli matrix vector �σ. The most general unitary operator
to apply to the spinor in order to describe Larmor precession over an angle α around a field
in the direction of the unit vector �n, takes the form R̂ = exp[−i�σ · �n (α/2)]. By expanding
the exponential this operator can be shown to be equal to

R̂ = cos(α/2)Î − i�σ · �n sin(α/2), (2)

where Î is the (2×2) identity matrix. If we choose the coordinate system such that the field is
parallel to z, the dot product �σ·�n reduces to σz = (10

0
−1), so applying this operator to the spinor
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Fig. 1 – (k, x) diagram for the first arm of a spin-echo setup consisting of 2 neutron resonance spin
flippers. The thin lines schematically show the splitting of the wave vector k(x) for the initial states
| ↑〉 and | ↓〉 in the fields of the flippers F1 and F2 in case no flip happens. The thick lines mark
“pathways” in the (k, x)-space, as discussed in the text. (The actual flippers contain gradient fields
giving a slight modification of these lines which is irrelevant here.)

means that we add α/2 to the phase of the component along (10) and simultaneously subtract
α/2 from the phase of the component along (01). When we calculate the components of the
average spin �S, we find that this vector has rotated by α around the z-axis. Taking α/2 = 2π,
this means that a full period of 2π for the components of the spinor gives a rotation of the
“observable” polarisation vector �S over 4π. Hence, the recovery of the initial spinor is obtained
only after 4π rotation of the polarisation. This is called the 4π periodicity of the spinor.

The common way to add/subtract a certain phase in the components of the spinor is to
subject the neutron beam over some path length to a magnetic field B. The neutron wave with
initial wave number k0, once in the field, splits into plane waves corresponding to the spin-up
(10) (or | ↑〉) and spin-down (01) (or | ↓〉) states with wave numbers k+ = k0+ 2µnB

h̄v and k− = k0−
2µnB

h̄v (µn = magnetic moment, v = velocity of the neutrons). Their phases increase at different
rates. At the end of the field k+ and k− return to k0, so from this point on the phases grow
again at equal rates. The thin lines in fig. 1a illustrate this for a succession of 2 DC magnets
(x is the travelling direction of the waves). The phase acquired by the terms for (10) and (01) in
the spinor equals

∫
(k+(x)− k0(x))dx and

∫
(k0(x)− k−(x))dx, respectively. The polarisation

precessed over an angle equal to the sum of these integrals. It is the area between the thin lines
for k+ and k− marked by thick lines. The | . . .〉 symbols indicate that no flip (n) happened
in the magnetic fields labelled F1 and F2. This mode of precession is called “DC mode”.
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When a spin flipping device sits in the first field and spin flip happens, the wave numbers
k+ and k− jump to k++ = k+ + 2µnB

h̄v and k−− = k− − 2µnB
h̄v upon leaving the field. This

means that the phase difference between the waves increases as a function of x twice as fast
as in the DC mode. This is called “zero-field precession” by Gähler et al. [1–3]. We refer to it
as “RF mode”. To halt this precession, one needs spin flip by a flipping device in the second
magnetic field, which returns k++ and k−− to k0. In the (k, x)-space this mode of precession
is represented by the thick lines in fig. 1b. The | . . .〉 symbols indicate that flip (f) happened.
We produced this mode of precession for the full white spectrum, by passing the polarisation
in adiabatic way through 2 gradient NR flippers [4,5]. The above descriptions of DC and RF
precession lead to the idea of a pathway of a neutron wave in the (k, x)-space.

One could imagine to increase the phase of only one component of the spinor by α and leave
the other component unchanged. This would produce a precession of the polarisation vector
�S about the field direction (z) over α, in other words, the observed period of the polarisation
would be equal to the period of the spinor. This was done by several authors in neutron
interferometers. They modified the precession phase along one of 2 spatially separated paths
by a magnetic field along that path [6–9] and thus demonstrated the 4π periodicity of the
spinor in response to the magnetic field.

The aim of this paper is to demonstrate this in the (k, x)-space. For an interference
experiment in the (k, x)-space we consider the diagrams in fig. 1 as the first arm of a neutron
spin echo (SE) interferometer. A second SE arm (which is left unchanged) compensates the
phases of the waves in the first arm, which do change when we vary parameters acting on the
phase of waves travelling along different paths in the (k, x)-space.

In the experiments of fig. 1a and b, the polarisation of the beam at entrance was per-
pendicular to the field direction, which means that we feed the initial states | ↑〉 and | ↓〉
equally. Now, let us operate the flippers at probability 1

2 (called “DC/RF mode”) and feed
the interference experiment with only state | ↑〉 (by aligning the incoming polarisation not
perpendicular, but parallel to the field). The initial single state | ↑〉 will double after each
flipper. This means that we “realise” the pathways marked as thick lines in fig. 1c. This is
the technique of “separated coils” introduced by Ramsey [10]. Of the 4 pathways after flipper
2, only the phase difference between the pairs [| ↑, f, f〉 − | ↑, n, n〉] and [| ↓, f, n〉 − | ↓, n, f〉]
can be observed. (We observed these interferences in earlier experiments [4, 11].) The phase
difference between the other combinations oscillates in time and will average out in the static
experiments discussed below. So, neutrons, as far in the states involved in these interferences
add as background in the observed intensities. Below, we explain that gradient NR flippers
provide parameters which “work” on only one state of the pairs mentioned above.

Gradient NR flipper. – The flippers in this experiment consist of a static field along the
neutron path x = [0, l] (l = length of the flipper), written as B(x) = B0+Agr cos(πx/l), where
the cosine term is a gradient field added to the homogeneous field B0). Such a gradient field
is absent in a mere resonant flipper [12]. Superposed on this is a longitudinal field oscillating
at frequency νrf such that the resonant point (2πνrf = µnB0

h̄ ≡ γB0) is near the center of the
flipper. The field Brf must vary along the range x = [0, l] from 0 at x = 0 to a maximum
halfway and back to 0 at x = l: Brf(x) = Arf sin(πx/l) exp[i 2πνrft].

When the resonance condition is fulfilled, the neutrons, as seen in the frame (x̃, ỹ, z)
rotating at the frequency ω0 = 2πνrf about the z-axis, are affected by the sum of two fields: the
static gradient field pointing along the z-axis —reduced by the value B0—, and the oscillating
field Brf which in this system also appears static. For a neutron flying with velocity v, the
effective field Beff rotates in the x̃z plane with frequency Ω = π/τ , where τ = l/v is the time
which the neutron needs to pass this interval. During this time the spin rotates about Beff at
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a frequency ωL = γA, where A is the magnitude of the effective field. If A is large enough, i.e.
the adiabatic condition ωL 
 Ω is satisfied (or the adiabaticity parameter k ≡ γAl/(πv) 
 1),
the neutron spin follows the effective field. Back in the laboratory system, this means that
spin is reversed.

The spin flip probability ρ for such a configuration is [4, 12]

ρ = 1 − sin2 φ/
(
k2 + 1

)
, (3)

where φ is the phase of the spin in the magnetic field of the rotating frame. ρ may be readily
changed between 1 and 0 by changing the amplitude Arf of the oscillating field from some
maximum to 0, i.e. by changing the adiabaticity parameter k from 
 1 to 0.

For the precession phase we must distinguish between f and n. The non-flipped part of
the spinor neither gains nor loses energy. This means that it did not interact with Brf . Its
phase is

∆φn =
γ

v

∫ l

0

B0(x)dx =
γ

v

∫ l

0

B0 + A cos(πx/l)dx =
γ

v
B0l. (4)

The phase for the flipped part of the neutron wave in our magnetic-field configuration is
∆φf = ω0τ + (±)φ = ω0τ + (±)(π

√
k2 + 1), as was shown in [2] for the case Agr ≈ Arf ≈ A

and the adiabatic condition fulfilled (k 
 1). The term ω0τ is the contribution of the rotating
frame, as in a conventional flipper [1, 3–5]. The second term is the precession phase itself in
the rotating frame. Its sign depends on the sign of the gradient field with respect to the spin.
We can rewrite the phase ∆φf as

∆φf ≈ ω0τ +
γ

v

∫ l

0

|Beff(x)|dx = ω0τ +
γ

v

∫ l

0

√
B2

x,eff(x) + B2
z,eff(x)dx, (5)

where Bx,eff(x) = A sin(πx/l) and Bz,eff(x) = B0 − ω0/γ + A cos(πx/l). In principle the
field B0 is chosen such that the terms B0 and ω0/γ cancel, but in practical reality as long as
|B0 − ω0/γ| < A/2, the flipper will work, so eq. (5) remains valid and a second-order effect
on ∆φf due to a variation of B0 will be present. We neglect it for the purpose of this work.

Combining these equations for the case of incomplete flip, we conclude:
1) the constant permanent field B0 determines the phase of the non-flipped part of the

wave and has a second-order effect on the phase of the flipped part;
2) the amplitudes Agr and Arf as set by the experimentalist determine the phase of the

flipped part of the neutron wave, but not of the non-flipped part.

Layout of the NRSE experiment. – The setup is shown schematically in fig. 2. A poly-
chromatic polarized neutron beam enters rotator R1 where the polarization can be rotated
towards the y-axis (⊥ field direction in SE arms) or kept parallel to the initial direction z
(= field direction in SE arms). Behind the SE setup sits a mirrored rotator R2. The combined
rotators allow to apply and analyze the polarisation perpendicular (denoted Pyy) or paral-
lel to the field direction (denoted Pzz). In addition, rotator R2 allowed for measuring in 2
anti-parallel modes, which in any setting enabled us to calculate the beam polarisation. Spin-
echo arm 1 is a set of two gradient NR spin flippers F1 and F2 at center-to-center distance
0.9 m. Details of their construction are given elsewhere [13]. To “smooth” the field gradients
between the flippers and for guide fields, iron plates are mounted below and above the beam
axis. Spin-echo arm 2 is identical with 1, but with opposite static field. The current sheet
CSh produces a stepwise field transition between the SE arms.

In each flipper we could independently vary the parameters: magnetic field B0 (0–1000 G),
amplitude Agr of the gradient field (0–40 G), and amplitude Arf of the RF field (0–20 G). Data
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Fig. 2 – Schematic side view of the spin-echo (SE) interferometer installed between a polariser and
analyser (not shown). The ovals “rf” in the flippers F1 and F2 in the first SE arm represent the
longitudinal RF coils, the triangles represent the gradient coils. The second arm is schematized.

were collected in a detector bank placed in the reflected beam of a monochromator crystal
behind the analyzer. The wavelength in various detectors ranged from λ = 0.19 . . . 0.23 nm
with a spread � 0.02 nm.

Setting flipping probability. – To find how to set the flipping probability ρ, we first
measured ρ in mode Pzz for each flipper as a function of Agr and Arf , in the way published
in [13]. As an example, fig. 3 shows results for F1. One sees that ρ � 1 (exceeds 0.85) for
Arf ≈ 12 G (upper edge of the map) and that ρ � 0.5 for Arf = 4 G, both irrespective of the
value of the gradient amplitude.

Interference experiments. – Prior to each experiment the parameters of all flippers were
set and the SE interferometer was balanced by means of a “phase coil” in SE-arm 1. In the
experiments we varied the parameters of flipper F1, the other flippers being unchanged.

First, following the scheme of fig. 1a, with all flippers off (ρ = 0, DC mode), we change
the gradient amplitude in flipper F1. Equation (4) predicts that this will affect the phases
of neither | ↑, n, n〉 nor | ↓, n, n〉, so the polarisation (when the rotators are set for measuring
Pyy) will not vary. This is shown in fig. 4a for 2 detectors.

Next, all flippers are set to flip probability ρ = 1 (RF precession mode), fig. 1b. According
to eq. (5) the phases of both the states | ↑, f, f〉 and | ↓, f, f〉 will change, hence the polarisation
varies periodically as a function of the gradient amplitude of F1, as shown in fig. 4b.

Fig. 3 – Flipper F1: map of the flipping probability ρ at B0 = 414G, λ = 0.193 nm, showing the
locus of points where ρ = 1

2
(thick lines).
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Fig. 4 – Polarisations measured in interference experiments for the pathways through the (k, x)-space
of fig. 1, while varying the parameters gradient Agr (left) and constant field B0 (right) of flipper F1.
Full lines: detector observing λ = 0.193 nm; dotted lines: idem λ = 0.217 nm.

Now we do the same, with rotators R1 and R2 set for measuring Pzz, with the flippers
at ρ = 1

2 (DC/RF mode, fig. 1c). Varying the gradient amplitude of flipper F1 will affect
| ↑, f, f〉, but not | ↑, n, n〉. Therefore, the phase difference between these 2 states changes at
half the rate of the previous experiment, so the polarisation will vary with the double period.
This is confirmed by the result in fig. 4c.

A similar set of experiments can be done by varying the permanent field B0 of flipper F1.
In the DC precession mode (fig. 1a) the phases of | ↑, n, n〉 and | ↑, n, n〉 change and we see a
periodic variation of the polarisation Pyy (fig. 4d). No phase variation is seen (in first order)
in RF precession mode (fig. 1b), which is shown in fig. 4e. Again, for the polarisation Pzz,
the observed period in B0 doubles, when the flippers are operated at ρ = 1

2 (DC/RF mode),
because | ↑, n, f〉 is affected but not | ↑, f, n〉. This is shown by fig. 4f.

In both sets of experiments the absolute period of the signals can be accounted for (to a
precision of 20%) on the basis of eq. (5) and the known profiles of the static B0 field and of
the gradient field [13]. In the interpretation this imprecision plays no role, since we observed
2 distinct periods in both sets of experiments with a ratio equal to 2 within 2%.
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Interpretation. – The spinor, represented as the vector
( α exp[iφ1]

β exp[iφ2]

)
, may be affected by

three different tools, which are driving parameters of the gradient NR spin flipper: Brf , and
Agr, and B0. We selected the parameter Brf to set the spin flip probability ρ equal to 0, 1, or
1
2 , in order to observe the spinor behavior in the modes DC (fig. 1a), RF (fig. 1b), or DC/RF
(fig. 1c), respectively.

The parameter Agr, in the DC mode, lets the spinor unchanged; in the RF mode it is
changed into

( α exp[iφ1+iχ(Agr)]
β exp[iφ2−iχ(Agr)]

)
and in the DC/RF mode into

( α exp[iφ1+iχ(Agr)]
β exp[iφ2]

)
. Here χ(Agr)

is the phase shift in the flipped part of the neutron wave. In terms of the observables one
gets: P ∼ cos(φ1 − φ2) for the DC mode (fig. 4a); P ∼ cos[(φ1 − φ2) + 2χ(Agr)] for the RF
mode (fig. 4b); and P ∼ cos[(φ1 − φ2) + χ(Agr)] for the DC/RF mode (fig. 4c).

The same consideration applies when the parameter B0 varies. In observables one gets:
P ∼ cos[(φ1 − φ2) + 2χ(B0)] for the DC mode (fig. 4d); P ∼ cos(φ1 − φ2) for the RF mode
(fig. 4e); and P ∼ cos[(φ1 −φ2) +χ(B0)] for the DC/RF mode (fig. 4f) with χ(B0) as a phase
shift produced by the permanent field B0 in the unflipped part of the neutron wave.

This consideration demonstrates that in the DC/RF mode the observable P shows the
“true” periodicity of the spinor, while in the RF and DC modes the periodicity of observable
is twice less than that of the spinor. Furthermore, it has been shown in many experiments that
the observable P changes periodically under a magnetic field with 2π-periodicity. Therefore,
we can conclude that in the DC/RF mode one observes the 4π-periodicity of the spinor.
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