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1. INTRODUCTION

The method of small-angle neutron scattering
(SANS) is widely used for the investigation of nuclear
and magnetic inhomogeneities in various materials,
including porous media, alloys, etc., which contain a
high concentration of contrast inhomogeneities with
sizes spread over the scale from tens of ångstöms to
several hundred microns. The SANS experiments in
such media usually reveal a power dependence of the
scattering intensity 

 

I 

 

on the momentum transfer (scat-
tering vector) 

 

q

 

,

in a certain interval of 

 

q

 

 > 1/

 

R

 

, where 

 

R

 

 is the charac-
teristic scale of the scattering system. There is a com-
monly accepted trend to perform SANS measurements
in the regime of single scattering (that is, under the con-
dition that 

 

L

 

 < 

 

l

 

, where 

 

L

 

 is the sample thickness and 

 

l

 

is the neutron mean free path in the medium) and treat
the possible multiple scattering (multiple SANS,
MSANS) as a factor complicating the interpretation of
data. The value of 

 

∆

 

 or its deviation from the Porod
asymptotics (

 

∆ 

 

= 4) is used to judge on the fractal char-
acter (dimension) of the system and on the correlator of
scattering inhomogeneities (for more detail, see [1–3]).
However, an analysis of the SANS data in this limit
hardly allows one to extract information concerning the
characteristic scale of the scattering system (of course,
except for the possibility of scale evaluation from the
uncertainty relation). Information of this kind can be
obtained in the case of 

 

q

 

 < 1/

 

R

 

 corresponding to the pas-
sage to the Guinier regime [4]. However, both the 

 

q

 

 <

I q( ) q ∆– , ∆ 4,≤∝

 

1/

 

R

 

 asymptotics and the Guinier regime are difficult to
access for the scattering in strongly dispersive media
with high concentrations of inhomogeneities. More-
over the condition 

 

L

 

 < 

 

l

 

 frequently cannot be satisfied
because of the difficulties of preparing sufficiently thin
samples; in such cases, the scattering unavoidably has
a multiple character.

This paper considers the possibility of evaluating, in
principle, the characteristic scale of a scattering system
by measuring both the broadening 

 

w

 

 of a transmitted
neutron beam and the neutron mean free path in the
sample using the standard SANS setups in the regime
of elastic multiple scattering (

 

L 

 

> 

 

l

 

). The mean free path
can be estimated from data on the attenuation of the pri-
mary beam as a function of 

 

L

 

 due to the scattering by
angles 

 

Ω

 

 > 

 

Ω

 

min

 

, where 

 

Ω

 

min

 

 is determined by the reso-
lution of the instrument. Methods for the estimation of
characteristic size using the beam broadening in the
neutron scattering experiments has been widely used
and extensively developed in both experimental and the-
oretical aspects, beginning with the work of Weiss [5]
(see, e.g., [6–8] and references therein). One aim of this
paper is to draw the attention to the relative character of
estimates obtained from simultaneous measurements of
the beam broadening and the integral cross section of
scattering for the angles 

 

Ω

 

 > 

 

Ω

 

min

 

. In other words, the
resolution of the SANS setup restricts the possibilities
of studying the large-scale inhomogeneities both in the
case of single scattering and in the multiple scattering
regime. Despite this restriction, MSANS is a powerful
tool for the investigation of various substances and the
determination of structural parameters of fractal and
nonfractal objects. However, it should be recognized
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that the real task of such investigations is to experimen-
tally evaluate the characteristic scale of inhomogene-
ities making the main contribution to the scattering
measured in the resolution limits of a given instrument,
rather than analyzing the spectrum of inhomogeneities
that may spread up to sizes that go unrecorded because
of the limited resolution. This paper presents an exper-
imental realization of this approach and shows exam-
ples of the application of MSANS to determining the
structural parameters of systems.

It should be emphasized that multiple scattering
substantially differs from the single scattering event.
Indeed, in the latter case, the information is obtained
using the coherent properties of radiation: the incident
and scattered neutron waves are considered as coherent.
In contrast, multiple scattering is a diffusion process,
and what we measure in experiment is the degree of
coherence. In this context, it is interesting to consider
MSANS using the concept of coherent or correlation
volume of the neutron beam [9].

The correlation volume can be intuitively defined as
a region where the coherent properties of neutrons are
significant. These properties are described using the
correlation function of a collimated beam, which, in
turn, is a Fourier image of the instrument resolution
function. It should be noted that the correlation length
for such a volume in SANS experiments may reach
1000 Å.

When a neutron beam propagates in a medium and
exhibits multiple scattering, the correlation length
decreases, which reflects the loss of the beam coher-
ence, which leads to broadening of the instrumental lin-
ewidth. Naturally, this loss of coherence depends only
on the number of scattering events per unit range (scat-
tering length) or, in other words, on the general integral
cross section of neutron scattering. The attenuation of
the neutron beam is related to decaying amplitude of
the neutron wave inside the coherent volume. This
amplitude consists of two components, the amplitudes
of nonscattered and forward-scattered waves. Obvi-
ously, both the correlation length and the amplitude of
the neutron wave within this length depend on the prop-
erties of a scattering medium.

For this reason, the second but no less important
task of this study is to consider the possibility of
extracting information about the fractal properties of
the scattering medium from data on the broadening and
attenuation of a neutron beam in the regime of multiple
scattering. One difficulty in obtaining reliable informa-
tion on the fractal dimension of the medium in the
regime of single scattering is related to the need for
studying the scattering intensity distribution 

 

I

 

(

 

q

 

) in a
broad range of 

 

q 

 

(over more than three orders of mag-
nitude), which is practically impossible for most exist-
ing SANS setups. The possibility of obtaining such
estimates from data on multiple scattering was demon-
strated by Maleyev [3].

The aforementioned problems will be considered
based on the results of MSANS, SANS and ultra-small-
angle neutron scattering (USANS) experiments
described below. The measurements were performed
for the model samples of YBCO ceramics, Al

 

2

 

O

 

3

 

 pow-
der, limestone (CaCO

 

3

 

) powder, and carbon (C) carbon
black in a range of sample thicknesses 

 

L

 

/

 

l

 

 < 5.

The paper is organized as follows. Section 2 briefly
summarizes the main stipulations of the MSANS the-
ory developed in [3, 6, 10, 11], which are used below
for the interpretation of experimental data. The experi-
mental part is presented in Section 3. The results of
experimental data processing are presented and dis-
cussed in Section 4, and Section 5 summarizes the main
conclusions.

2. THEORY

Let us briefly consider the main stipulations of the
theory developed in [3, 6, 10], which are used below for
the interpretation of the results of MSANS measure-
ments in various regimes. The aforementioned papers
considered the regimes of diffraction [3] for 

 

α 

 

�

 

 1 and
refraction [10] for 

 

α

 

 

 

�

 

 1, where 

 

α

 

 = 

 

kR

 

(

 

U

 

/

 

E

 

) is a
change in the neutron wavefunction over an inhomoge-
neity scale 

 

R

 

, 

 

k

 

 = 2

 

π

 

/

 

λ

 

, is the wavevector of neutrons
with the energy 

 

E

 

, 

 

U

 

 = 2

 

π

 

�

 

2

 

∆

 

(

 

bN

 

0

 

)/

 

m

 

n

 

 is the potential
energy of the inhomogeneity (optical potential), 

 

m

 

n

 

 is
the neutron mass, 

 

∆

 

(

 

bN

 

0

 

) is the difference of the densi-
ties of the scattering lengths for the inhomogeneity and
the medium, 

 

b 

 

is the coherent scattering amplitude, and

 

N

 

0

 

 is the number of formula units per unit volume
(cm

 

3

 

). The regime of refraction was analyzed in the
limit of low concentrations of inhomogeneities in the
sample, that is, under the condition that 

 

δ

 

V

 

/

 

V

 

 

 

�

 

 1,
where 

 

V

 

 is the sample volume and 

 

δ

 

V

 

 is the volume
fraction accounting for inhomogeneities of the charac-
teristic scale 

 

R

 

.

It was shown [3] that the characteristic momentum,
which determines the beam broadening as a result of
multiple scattering (

 

L 

 

>

 

 l

 

) from a fractal medium in the
diffraction regime in the general case, can be written as

(1)

where 

 

∆

 

 = 

 

D

 

v

 

 (

 

D

 

v

 

 < 3 is the dimension of a volume frac-
tal) or 

 

∆

 

 = 6 – 

 

D

 

s

 

 (2 < 

 

D

 

s

 

 < 3 is the dimension of a sur-
face fractal); 

 

µ

 

 = 

 

f

 

(

 

∆

 

); and 

 

g

 

∆

 

 

 

≈

 

 1. Accordingly:

In the particular case of 

 

∆

 

 = 4 (the Porod asymptotics),
we have 

 

µ

 

 = 1/2 and the scattering intensity 

 

I(q) is

qL
∆( ) 1

2R
------- L

g∆l
------- 

  µ
, α � 1,=

qL
∆( ) L

µv, s, µv∝ Dv 2–( ) 1– 1,>=

1/2 µs< 4 Ds–( ) 1– 1.<=
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described by the diffusion formula:

(2)

Taking into account corrections for the insuffi-
ciently rapid decrease in the single scattering cross sec-
tion with increasing scattering angle [6], the character-
istic momentum can be written as

(3)

where the mean free path length is given by the formula

(4)

According to [3], the scattering intensity distribu-
tion I(q) in the regime of multiple scattering (L > l) is
divided into two parts. The asymptotic part (for

q � ) is similar to the I(q) distribution in the single

scattering regime. In the central part (for q ≤ ), the
distribution is close to that in the Guinier regime:

(5)

Here, Rg(L) is the effective gyration radius defined as

(6)

where Γ(x) is the gamma function.

The intensity I(q = 0) of forward scattering (i.e., the
attenuation) is expressed as [3]

(7)

where 2µ = 2/(Dv – 2) > 2 and 1 < 2µ = 2/(4 – Ds) < 2
for the volume and surface fractals, respectively, and κ
is the neutron wavevector. In both cases, the intensity
I(q = 0) decreases with the sample thickness L faster
than according to the L–1 law (characteristic of the dif-
fusion model used for analysis of MSANS on inhomo-
geneities with sharp boundaries (2µ = 1)). This behav-

ior of I(q = 0) (as well as of ) in the case of MSANS
in fractal media offers an example of the so-called
anomalous diffusion (superdiffusion) [12].

In the regime of refraction [10] in a sample with a
small concentration of spherical inhomogeneities and a
not very large thickness (l � L � L0 = lα2lnα), the

I q( ) q2

2qL
2

--------–
 
 
 

, qLexp∝ 1
2gR
---------- L

l
---.=

qL
1

2R
------- L

l
--- L

l
---ln ,=

l
k2

3π ∆ bN0( )[ ]2R
------------------------------------ V

δV
-------.=

qL
∆( )

qL
∆( )

I q( ) I 0( ) 1
q2Rg

2 L( )
3

--------------------– .=

Rg
2 L( ) 3Γ 4µ( )

4Γ 2µ( ) qL
∆( )( )2

----------------------------------,=

I q 0=( ) µκ2Γ 2µ( )
2π qL

∆( )( )2
-------------------------

2µ κR( )2

π
---------------------

g∆l
L

------- 
 

2µ

Γ 2µ( ),= =

qL
∆( )

intensity of multiple scattering is also described by a
diffusion formula with the characteristic momentum

(8)

For L ≈ L0, the scattering intensity deviates from the
behavior predicted by the diffusion model, and for L �
L0 it is described by the formula [10]

(9)

In the asymptotic limit q �q2, the intensity of multiple
scattering coincides with that of a single scattering and
decreases as q–3 [10].

To our knowledge, multiple scattering in the refrac-
tion regime—neither in the case of a high concentration
of inhomogeneities (whereby δV ~ V as in multidomain
polycrystalline ferromagnets, granulated and ceramic
materials, etc.), nor in fractal media—has not been con-
sidered in the literature.

3. EXPERIMENT

In our MSANS experiments, the attenuation I(q =
0)/I0, the broadening w of the neutron beam, and the
scattering intensity Is(q) (for 5 × 10–3 Å–1 < q < 3.5 ×
10−2 Å–1) were studied as functions of the sample thick-
ness L for YBCO ceramics, Al2O3 powder, CaCO3 pow-
der, and carbon black. The sample parameters impor-
tant from the standpoint of MSANS were as follows:

(i) YBa2Cu3O7 + δ (YBCO) ceramics: bN0 = 4.75 ×
1010 cm–2; density, ρ ≈ 4.9 g cm–3; range of sample
thicknesses, L is from 0.9 to 20 mm; δL/L ≤ 1.5%.

(ii) Al2O3 powder: bN0 = 5.38 × 1010 cm–2; average
grain size, 18–20 µm; L is from 2 to 16 mm;
δL/L ≤ 2.5%.

(iii) Limestone (CaCO3) powder: bN0 = 5.11 ×
1010 cm–2; ρ ≈ 2.93 g cm–3; L is from 0.1 to 8.9 mm;
δL/L ≤ 1.5%.

(iv) Carbon black: bN0 = 6.5 × 1010 cm–2; L is from
0.2 to 9 mm; δL/L ≤ 1.5%.

The MSANS measurements were performed using
the small-angle polarized neutron scattering facility
Vector-20 (WWR-M reactor, Petersburg Nuclear Phys-
ics Institute, Russian Academy of Sciences, Gatchina),
which operated in slit geometry with twenty 3He detec-
tors in the horizontal plane [6]. The scattering intensity
could be scanned in a range of q up to 5 × 10−1 Å–1 by
rotating the detector system. In this experiment, the
polarization technique was used for monochromatiza-
tion of the neutron beam monochromatic. The measure-
ments were performed at a neutron wavelength of λ =
8 Å with ∆λ/λ = 9%, which excluded the Bragg scatter-
ing. The vertical and horizontal resolution calculated

q1
L
l
--- α2L

2l
---------ln

kU
2E
-------.=

I q( )
k2q2

2π q2 q2
2

+( )
3/2

----------------------------------, q2
L

2g∆lR
--------------.= =
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with allowance for the slit geometry [14] of the experi-
mental setup was δqv = 3 × 10–3 Å–1 and δqh = 8 ×
10−4 Å–1, respectively.

In order to obtain independent data on the fractal
dimension of carbon black and verify the MSANS
results, we additionally studied this sample using the
traditional SANS and USANS techniques in a broad
range of momentum transfer (1.5 × 10–6 < q < 1.5 ×
10−1 Å–1). The SANS measurements were performed
using the SANS-1 facility (FRG1 reactor GKSS
Research Centre, Geesthacht, Germany) [15], which
operated in a geometry close to point geometry and was
equipped with a two-dimensional (2D) position-sensi-
tive 3He detector. The working neutron wavelength was
λ = 8.1 Å with ∆λ/λ = 10%. The experiments were per-
formed for four distances between the sample and
detector Rsd = 0.7, 1.8, 4.5, and 9.7 m, which allowed
the momentum transfer to be varied within 3 × 10–3 <
q < 1.5 × 10–1 Å–1). The instrument resolution was
approximated by the Gauss function and calculated
separately for each Rsd value as described in [16].

The carbon black sample was placed in a 1-mm-
thick quartz cell. The initial spectra measured in each q
interval were corrected using standard procedures with
allowance for scattering from the setup parts and the
cell and for the room background [17]. The obtained

2D spectra were averaged with respect to azimuth and
normalized to the cross section of noncoherent neutron
scattering in a 1-mm-thick layer of water [17]. For Rsd >
1.8 m, the spectra were normalized to the cross section
determined for Rsd = 1.8 m with additional allowance
for the attenuation factor [17].

The USANS measurements were performed using a
DCD double crystal diffractometer (at the same FRG1
reactor of the GKSS Research Center) at a working neu-
tron wavelength of λ = 4.43 Å with ∆λ/λ = 1 × 10–5 [18].
This instrument was equipped with a double mono-
chromator unit based on perfect silicon crystals cut
along the (1, 1, 1) plane. The first crystal was used to
form the neutron beam and the second crystal per-
formed the monochromator function. The angular dis-
tribution of neutrons in the beam past the sample (situ-
ated behind the double monochromator) was measured
by rotating an analyzer crystal (identical to the mono-
chromator crystal) at a minimum angular step of 2 ×
10−7 deg. The FWHM of the instrument line was w0 =
2.6 × 10–5 A–1. The momentum transfer was varied
within 1.5 × 10–6 < q < 5 × 10–3 Å–1.

Figures 1–3 show the pattern of typical changes in
the shape of the neutron beam, Is(q)/I(0), and in the
attenuation I/I0 (where I0 = I(L = 0)), measured by the
central detector as I(q = 0) as a function of the sample
thickness.

The experimental beam attenuation profiles (Fig. 3)
are normalized to the integral attenuation cased by neu-
tron absorption in the samples.

4. RESULTS AND DISCUSSION

4.1 MSANS

4.1.1. Beam shape. It was found that the shape of
the neutron beam upon scattering can be represented as
a sum of two components: Gaussian, describing the
beam width upon scattering, and Lorentzian of nth
power (n = f(∆)), describing the dependence of the scat-
tering intensity Is(q, L) on q at large momenta:

(10)

where A, B, C, s, and n are free parameters and q01 and q02

are the centering parameters. The quantity sr2 = δ  + 
is a sum of dispersions determining the momentum
uncertainty in the beam (s1 is the s value determined by
fitting the experimental data to formula (10) for sr2 =

δ ). The uncertainty δqh related to the horizontal res-
olution (which is almost ten times as small as the verti-

I q( ) A
q q01–( )2

2s2
----------------------–exp=

+ B
sr2n

q q02–( )2 sr2+[ ]n
------------------------------------------- C,+

qv
2 s1

2

qv
2

0.0183

–0.02

Is(q, L)/I(q = 0), arb.units

q, Å–1
–0.01 0 0.01 0.02 0.03

0.0498

0.1353

0.3679

1.0000

2.7183

0.0067

0.0025

0.0009

0.0003

0.0001

10–5

10–6

1

2 ∝ q–2.6

∝ q–4

Fig. 1. The neutron beam shape measured in a regime of sin-
gle scattering (L < l): (open circles) CaCO3, L = 0.67 mm;
(black circles) carbon black, L = 0.83 mm. Solid curves 1
and 2 show the results of calculations using formula (10);
dashed curve represents the beam shape in the absence of a
sample.
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cal resolution) is reflected predominantly by the s
value, since

(11)

where ∆w(L) is the beam broadening in a sample of
thickness L and s0 is the beam dispersion in the absence
of the sample. In the course of fitting by least squares to
formula (10), it was established that the dispersion s
varies rather slightly and falls almost within the exper-
imental error limits, irrespective of the fact whether this
value is taken into account or not in the sr product (i.e.,
s ≈ s1). However, only allowance for the s value in the
sr product provides a satisfactory description of scatter-
ing in the region of “tails”. Substitution of a preset
value of s1 instead of the free parameter s into the sr
product significantly simplifies the fitting procedure.
Depending on the sample thickness, the sr product val-
ues fall within sr = (5–6.5) × 10–3 Å–1 (YBCO), (5–8) ×
10–3 Å–1 (CaCO3), (5–8.5) × 10–3 Å–1 (Al2O3), and
(5−7) × 10–3 Å–1 (carbon black). The fitting by least
squares gives the following values of exponent in for-
mula (10): n = 2 (CaCO3, Al2O3, YBCO) and n = 1.3
(carbon black). The dependences calculated using for-
mula (10) with the parameters found through fitting by
least squares are depicted by solid curves in Figs. 1 and 2.

4.1.2. Scattering intensity Is(q). Figure 4 shows the
plots of Is(q) versus momentum q at q > sr for CaCO3
and carbon black (analogous curves were also obtained

s2 ∆w2 L( ) s0
2,+=

for Al2O3 and YBCO). It was found that these depen-
dences could be satisfactorily described using the
formula

(12)

where ∆ = 4 ± 0.1 (for CaCO3, Al2O3, YBCO) or 2.6 ±
0.1 (for carbon black) and the parameter A1 is virtually
a linear function of L. The scattering data were pro-
cessed by least squares (with corrections for the slit
geometry) and analyzed in the range of momentum
transfer 0.007 Å–1 ≤ q ≤ 0.03 Å–1. A correction for the
slit geometry is essential for q < 10–2 Å–1, where the
experimental data (representing a convolution of the
scattering intensity Is(q) ∝ q–∆ with the instrument res-
olution function) deviate from the q–∆ law (these devia-
tions are not distinguished in Fig. 4). The power depen-
dence of the scattering intensity on the momentum
Is(q, L) ∝ q–2.6, which is observed for carbon black, is
similar to that for scattering on a volume fractal with
the dimension Dv = 2.6 ± 0.1.

4.1.3. Beam attenuation. For small sample thick-
nesses (L < l), the attenuation of the central beam as a
function of L for all samples (Fig. 3) could be satisfac-
torily described using the formula

(13)

Is q( ) A1/q∆,=

I q 0=( )
I0

-------------------- L
lexp
-------– 

  ,exp=

–0.02

Is(q, L), arb.units

q, Å–1
–0.01 0 0.01 0.02

2.7183

3.78

1.68

0.83

0.03

1.0000

0.3679

0.1353

0.0498
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0.0067
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0.0009
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(a)

–0.02

Is(q, L), arb.units

q, Å–1
–0.01 0 0.01 0.02

1.0000
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1.53

0.67

0.03

(b)

2.7183

0.3679

0.1353

0.0498

0.0183

0.0067

0.0025
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10–5

Fig. 2. Variation of the neutron beam shape for (a) carbon black and (b) CaCO3 samples of different thickness L (indicated in mil-
limeters at the curves). Points present the experimental data; solid curves show the results of calculations using formula (10).
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which was used for determining the neutron mean free
path lexp. The results of lexp determination by this
method are presented in Table 1. The calculated curves
of I/I0 versus L for the parameters determined by least
squares are depicted by solid lines in Fig. 3.

As can be seen from Fig. 3, an increase in the sample
thickness is accompanied by deviation of the experi-
mental data from the exponential dependence, which is
related to the multiple scattering. It was found that
experimental data on the beam attenuation with
increasing sample thickness for nonfractal objects are
well described with allowance for multiple scattering in
terms of expression (2) within the limits of the vertical
and horizontal resolution of the central detector. The

2D convolution of the diffusion formula (2) at q = 0
with the instrument resolution functions in the two
directions described by Gaussians with dispersions δqh

and δqv, which was used for processing the data on the
beam attenuation for L > 0.5lexp, is as follows:

(14)

where D and F are free parameters and µ = 1/2.

I
I0
----

2Dδqxδqy

2δqx( )2 FL+[ ] 2δqy( )2 FL+[ ]{ }µ-----------------------------------------------------------------------------------,=

0.2

0
0

I/I0

L, mm
5 10 15 20

0.4

0.6

0.8

1.0

Fig. 3. Attenuation of the beam intensity measured using the
central detector for neutrons scattered with a momentum
transfer q > qmin (qmin is determined by the instrument res-
olution) as a function of the sample thickness L: (�) carbon
black; (�) CACO3; ( ) YBCO; ( ) Al2O3. Solid curves
show the results of fitting to the exp(–L/lexp) law; dashed
curves show the results of calculations using formula (14).

Table 1.  The main parameters of samples determined from an analysis of the MSANS data (see the text for explanations)

Sample lexp, mm ∆ µ D R, Å

Nonfractal

Al2O3 3.9 ± 0.6 4 ± 0.6 0.5 3 203 ± 11

YBCO 9.4 ± 0.3 4 ± 0.6 0.5 3 171 ± 16

CaCO3 1.7 ± 0.1 4 ± 0.1 0.5 3 216 ± 6

Fractal

C (carbon black) 2.5 ± 0.1 2.6 ± 0.1 0.8 ± 0.1 Dv = 2.6 ± 0.1*

Ds = 2.75 ± 0.15** 351 ± 12

**From large-q asymptotics.
**From data on the neutron beam broadening and attenuation.

10–4

0.11

0.01

Is(q), arb.units

q, Å–1
0.02 0.03

10–3

10–2

10–5

0.75

1.9

5.78

8.98
5.78
3.88

1.48

0.28

Fig. 4. Plots of the neutron scattering intensity Is(q) versus
momentum transfer q (q > sr) for (�) CaCO3 and (�) carbon
black samples of various thicknesses L (indicated in milli-
meters at the curves). Solid and dashed curves show the
results of fitting to the Is ∝ q–∆ law. For all sample thick-
nesses, ∆ = 4 ± 0.6 (CaCO3) and 2.6 ± 0.01 (carbon black).
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The results of least squares fitting to formula (14)
for CaCO3, Al2O3, and YBCO are depicted by dashed
lines in Fig. 3. Expression (14) shows that, in the limit
of δqx, δqy  0, the attenuation asymptotically tends
to I/I0 ∝ 1/L in agreement with the theory [3]. The quan-
tity F in formula (14) was treated as a free parameter, but,
if the deviation of the beam attenuation from exponent is
completely described by the diffusion formula (2) within
the aperture of the central detector, we must have FL =

2 . Calculations showed that this relation is valid to
within 3%, provided that the beam attenuation is mea-
sured in an optimized geometry (δqv = 1.8 × 10–3 Å–1),
where qL are taken from an analysis of data on the beam
broadening (Fig. 5).

We have also used formula (14) in the analysis of
data on the beam attenuation at L > 0.5lexp for carbon
black, but the exponent µ was treated as a free parame-
ter. Then, the fitting by least squares gave µ = 0.8 ± 0.1.
In the limit of δqx, δqy  0, this yields the asymptotic
behavior I/I0 ∝ 1/L2µ with 2µ = 1.6. According to the
theory [3], this behavior corresponds to the neutron
beam attenuation upon multiple scattering on the sur-
face fractal with the dimension Ds = 4 – 1/µ = 2.75.

4.1.4. Beam broadening. Figure 5 presents our
experimental data on the beam broadening as a function
of the sample thickness, which was determined from
relation (11) as

(15)

As will be shown below, the characteristic scale of
inhomogeneities determined in our experiments is on
the order of several hundred ångströms. For this reason,
the experimental data can be described in the diffrac-
tion approximation. Estimates show that the character-
istic size R0 (corresponding to α ≈ 1) at which the
refraction regime also becomes significant is R0 ≈ 2 ×
10–3 mm. The corresponding characteristic momentum
according to Eq. (8) is q1 < 2 × 10–4 Å–1. Thus, the
refraction scattering component corresponds to the
range of momenta below the limiting resolution of the
instrument and, hence, this component can be ignored
in comparison to diffraction in the analysis of scatter-
ing. Analogous estimates were previously reported
in [11] for SANS in YBCO ceramics.

As can be seen from Fig. 5, the beam broadening
defined as ∆w = qL (see Eqs. (1)–(3)) is satisfactorily

qL
2

∆w2 s2 s0
2
.–=

described by the formula

(16)

with a nonzero “cutoff” on the abscissa axis for L  0.
This relation was considered in much detail in [6–8].
An analysis of the data on ∆w(L) gave the following
values of the exponent: µ = 0.5 (for CaCO3, Al2O3,
YBCO) or ~0.8 (for carbon black), which is fully con-
sistent with the values obtained above from the analysis
of the central beam attenuation I/I0 as a function of the
sample thickness L.

Within the framework of the diffraction approxima-
tion, the characteristic size R of inhomogeneities mak-
ing the main contribution to the scattering detected
within the limits of resolution of a given instrument can
be determined using formula (1) with the aforemen-
tioned parameters lexp and qL. These estimates of R in all
samples under consideration for L ≥ lexp are presented
in Table 1 and plotted in Fig. 6, where solid and dashed
curves show the data calculated using formula (16).

The scattering from inhomogeneities on this scale
must lead to deviations from power dependences of the
scattering intensity (Fig. 4) for sr < q ≤ 1/2R. However,

∆w a bLµ+=

1
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∆w, 10–3 Å–1

L1/2, mm1/2
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Fig. 5. Plots of the beam broadening ∆w =  versus

sample thickness L for (1) CACO3; (2) YBCO; (3) carbon
black, and (4) Al2O3. Points present the experimental data;
solid curves show the results of calculations using the for-
mula ∆w = a + bLµ.

w
2

w0
2

–

Table 2.  Fractal dimensions determined by analysis of the SANS data for carbon black

Interval of q, Å–1 0.048–0.15 0.013–0.064 0.007–0.022 0.003–0.009

Fractal dimension D 2.54 ± 0.1 2.75 ± 0.05 2.56 ± 0.08 2.62 ± 0.02
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this condition was not met in our experiments, where
the minimum sr value was srmin ≈ 3 × 10–3 Å–1. In order
to observe deviations from the power dependence of the
scattering intensity at low q, the experiments have to be
performed using thin samples and an experimental
setup with sufficient resolution for a momentum trans-
fer of q < 10–3 Å–1.

4.2. SANS and USANS

As can be seen from the MSANS data in Table 1,
which were obtained using measurements of the neu-
tron beam broadening and attenuation as dependent on
the sample thickness L (q ≤ qL), carbon black is a sur-
face fractal with Ds = 2.75 ± 0.15. At the same time, the
exponent ∆ determined from an analysis of the scatter-
ing intensity Is as a function of the momentum q in the
asymptotic limit for q � qL > 7 × 10–3 Å–1 is 2.6 ± 0.1,
which corresponds to the scattering on a volume fractal
with Dv = 2.6 ± 0.1. These results can be explained by
assuming that (i) the samples of carbon black under
study contain two (surface and volume) fractals and (ii)
the main contributions of these fractals to the scattering
intensity Is(q) are observed in different ranges of q. This
implies that Is(q) plotted on the logarithmic scale must
exhibit a bending point, which corresponds to the pas-
sage from one type of scattering to another. In order to
check for this assumption, it was necessary to obtain
independent estimates of the fractal dimension of car-
bon black. Such estimates can be obtained by measur-
ing the neutron scattering intensity distribution Is(q)
using the SANS and USANS techniques in a single

scattering regime in the most broad range of the
momentum transfer q.

Figure 7 shows a plot of the differential cross sec-
tion of neutron scattering dΣ(q)/dΩ measured for a
sample of carbon black with L = 1.5 mm using the
SANS-1 setup in the momentum range 0.003 Å–1 ≤ q ≤
0.15 Å–1. The data were analyzed in terms of the formula

(17)

where A2 is a free parameter and Iinc is a constant quan-
tity, which is independent of q and related to the scat-
tering from inhomogeneities on the order of the wave-
length λ (in this case, from one to several tens of ång-
ströms). The final results were obtained by calculating
a convolution of expression (17) with the instrument
resolution function. The experimental curves of the dif-
ferential cross section dΣ(q)/dΩ were processed by
least squares for each of the four intervals of variation
of the q value. The results of this analysis are summa-
rized in Table 2.

As can be seen from the data in Table 2, the fractal
dimensions fall within 2.54–2.75 depending on the
interval of q values used for the analysis. At the same
time, the fractal dimension (D ≈ 2.65) obtained by aver-
aging over all the q intervals under consideration is
close to the estimate Dv = 2.6 ± 0.1 obtained for the
same sample of carbon black in our MSANS experi-
ments.

Figure 8 shows the results of USANS measurements
for the carbon black samples with L = 0.2 and 1.5 mm

dΣ
dΩ
------- q( ) A2

qD
------ I inc,+=
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Fig. 6. Plots of the characteristic scale R of the scattering
system versus L/l for (�) carbon black, (�) CACO3;

( ) YBCO; and ( ) Al2O3. Points present the results of cal-
culations using formula (5); solid and dashed curves show
the results of fitting using formula (16).
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Fig. 7. A plot of the differential cross section of neutron
scattering dΣ(q)/dΩ versus momentum transfer for a sample
of carbon black with L = 1.5 mm. Points present the results
of SANS measurements; solid curve shows the results of
calculations using expression (17).
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measured using a double crystal diffractometer [18].
The attenuation of the neutron beam transmitted
through the sample was very large: 1 – I(q = 0)/I0 ≈ 0.84
and 0.97 for 0.2- and 1.5-mm-thick samples, respec-
tively. This implies that the experimental data should be
interpreted in terms of the MSANS theory [3]. In the
standard analysis of USANS spectra for L > l, parame-
ters characterizing the scattering system are usually
determined from the ∆w(L) function [7, 8]. In the case
under consideration, we are interested in determining
the asymptotic behavior of I(q) at large q. As was
pointed out above (and demonstrated previously [3, 6,
9, 18]), the character of this behavior is similar to that
in the case of single scattering.

We have analyzed the scattering intensity I(q) at
large q using a procedure described in [19]. According
to this, the experimental data are approximated using a
function of the type

(18)

where the first term describes the scattering intensity
variation on the wings of the instrument function and
the second term reflects the asymptotic behavior of the
scattering at large q in the sample studied. The values
of the exponent δ determined by least squares fitting to
formula (18) for L = 0.2 and 1.5 mm were δ = 2.35 ±
0.03 and 2.8 ± 0.03, respectively. According to [19], an
increase in δ with the sample thickness is related to the
pre-asymptotic terms of the expansion of I(q) at large q.
The I(q) values calculated using formula (18) with the
parameters determined by least squares are depicted by
solid curves in Fig. 8.

For the correct comparison of USANS data to the
results obtained in the conventional SANS experiments, it
is necessary to take into account that the exponent in the
dependence of the scattering intensity on the momentum
transfer measured using the double-crystal technique is
increased by unity [19]. Therefore, the asymptotic behav-
ior of the scattering intensity I(q) for carbon black in the
interval 3 × 10–4 Å–1 ≤ q ≤ 3 × 10–3 Å–1 is satisfactorily
described by the relation I(q) ∝ q–∆, where ∆ = δ + 1 =
3.35–3.38, which is equivalent to the scattering on a
surface fractal with the dimension Ds = 6 – ∆ =
2.62−2.65. This value is very close to the estimate (Ds =
2.75 ± 0.15) obtained in our MSANS experiments.

Thus, we have measured the small-angle neutron
scattering intensity Is(q) for carbon black in the range of
momentum transfer 0.0003 Å–1 ≤ q ≤ 0.15 Å–1 using the
SANS and USANS techniques. The obtained data
unambiguously indicate that there are two intervals of
q in which the scattering intensity Is(q) obeys the law
Is(q) ∝ q–∆ with different values of the exponent ∆. In
the interval of q ≤ qc (where qc ≈ 0.003 Å–1 is the point
of bending on the Is(q) curve), the exponent is close to
3.35, whereas at q ≥ qc, we have ∆ ≈ 2.65. This asymp-
totic behavior of Is(q) shows the presence of two corre-

I q( )
A3

q2
------

A4

qδ------,+=

lators, which characterize the system under consider-
ation and predominate in the corresponding interval
of q. The first correlator corresponds to a surface fractal
with the dimension Ds = 2.65, while the second corre-
lator corresponds to a volume fractal with the same
dimension Dv ≈ 2.65.

5. CONCLUSIONS

(i) We have experimentally demonstrated the possi-
bility of using MSANS method [3, 6, 10] for evaluating
the structural parameters (the characteristic scale R and
the mean free path l) of a scattering system using the
standard instruments where these values cannot be
determined in the standard SANS regime.

(ii) A new method has been proposed for estimating
the fractal system dimension using data on the attenua-
tion and broadening of the transmitted neutron beam in
the MSANS regime.

(iii) A comparison of the MSANS data to the values
obtained by the classical SANS and USANS methods
in the regime of single scattering showed a good coin-
cidence of the results. In particular, a volume fractal
with the dimension Dv = 2.6 ± 0.15 in the asymptotic
limit of large q and a surface fractal for carbon black
with the dimension Dv = 2.7 ± 0.15 for q ≤ qL were
observed both in our MSANS experiments and in the
SANS and USANS measurements.
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Fig. 8. Plots of the neutron scattering intensity versus
momentum transfer for carbon black samples with L =
0.2 (1) and 1.5 mm (2). Points present the results of USANS
measurements; solid curves show the results of calculations
using expression (18) for q � qL.
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