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The T—x magnetic phase diagram of Mn;_,Fe,Si solid solutions is probed by magnetic susceptibility,
magnetization and resistivity measurements. The boundary limiting phase with short-range magnetic order
(analogue of the chiral liquid) is defined experimentally and described analytically within simple model ac-
counting both classical and quantum magnetic fluctuations together with effects of disorder. It is shown that
Mn;_,Fe;Si system undergoes a sequence of two quantum phase transitions. The first “underlying"quantum
critical (QC) point 2™ ~ 0.11 corresponds to disappearance of the long-range magnetic order. This quantum
phase transition is masked by short-range order phase, however, it manifests itself at finite temperatures by
crossover between classical and quantum fluctuations, which is predicted and observed in the paramagnetic
phase. The second QC point z. ~ 0.24 may have topological nature and corresponds to percolation thresh-
old in the magnetic subsystem of Mnj_,Fe,Si. Above z. the short-range ordered phase is suppressed and
magnetic subsystem becomes separated into spin clusters resulting in observation of the disorder-driven QC
Griffiths-type phase characterized by an anomalously divergent magnetic susceptibility x ~ 1 /T’E with the
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exponents & ~ 0.5—0.6.
DOI: 10.7868/S0370274X13240144

Since mid-eighties it is known that substitution of
manganese with iron in Mn;_,Fe,Si isostructural solid
solutions suppresses transition temperature into heli-
cal state T, and leads to disappearance of spontaneous
magnetic moment in the range 0.1 < = < 0.2 [1]. Re-
cent studies revealed that the zero value T.(z) = 0
may be reached for z* = 0.12-0.15 [2, 3|. Neutron
diffraction experiments showed that rise of z results in
decrease of exchange energy, whereas Dzyaloshinskii—
Moriya (DM) interaction does not depend on sample
composition [2]. The opportunity to satisfy condition
T.(x*) = 0 opens the door to quantum phase transition
and observation of the quantum critical (QC) phenom-
ena in Mn;-,Fe,Si. In Ref.[3] authors argue that QC
transition in Mn;_,Fe,Si exists but has “underlying”
nature [3]. In practice this statement means that QC
point (if any) is located inside some intermediate phase
surrounding the T.(x) line on the magnetic phase dia-
gram. Existence of the intermediate phases of presum-
ably fluctuating nature for T > T.(x) in Mn;_,Fe,Si
was also reported in [4]. Besides, recent theoretical con-
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sideration of the magnetic properties of MnSi within
Hubbard model [5] showed that weakening of the on-
site repulsion induces transformation of the spiral phase
with long-range magnetic order to the partially ordered
or fluctuation-driven spiral phase. The considered be-
havior is very similar to that one caused by chiral con-
densation effects in quantum helimagnets [6].

The aforementioned theoretical scenarios [5, 6] as
well as some experimental results [3] show that QC phe-
nomena in Mn;_,Fe,Si compounds may be hidden due
to formation of the intermediate magnetic phases so that
no pronounced anomalies for finite temperatures at QC
point (like divergent magnetic susceptibility) should ex-
ist. Indeed, no specific effects at T' ## 0, which mark un-
ambiguously QC region, have been reported up to now
for Mn;_,Fe,Si. From the other hand, the absence of
experimentally observed QC anomalies puts into ques-
tion applicability of any QC model to this system with
anisotropic antisymmetric magnetic interactions.

In the present work the T'—x magnetic phase dia-
gram of Mn;_,Fe,Si solid solutions is revisited. We ar-
gue that Mn; _,Fe,Si undergoes a sequence of two quan-
tum phase transitions. In contrast to previous findings,
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Fig. 1. Magnetic susceptibility (a) and dx /9T (b) in Mni_,Fe;Si solid solutions. In the panel (b) peaks A and B correspond
to short-range and long-range magnetic ordering, respectively. The legend in the penels (a)—(b) denotes iron concentrations.
Arrott plots for MnSi (c¢) and examples of temperature dependences of the spontaneous magnetization square for Mnj_,Fe,Si
(d). The digits near curves in the panel (¢) mark corresponding temperatures

the first underlying QC point z* ~ 0.11 is not com-
pletely masked by the intermediate short-ordered phase
and manifests itself at finite temperatures by crossover
between classical and quantum fluctuations. The second
QC point located at x. ~ 0.24 marks onset of the low
temperature power divergence of the magnetic suscep-
tibility x ~ 1/7¢ and may have a topological nature.
Single crystals of Mn;_,Fe,Si solid solutions in the
range z < 0.3 were synthesized by both Czochral-
ski and Bridgeman methods. The quality of the sam-
ples was controlled by the X-ray Laue diffraction. As
long as real iron content in obtained crystal may dif-
fer from nominal x value in initial ingot, all samples
were examined by EPMA. Assuming composition for-
mula (Mn;_,Fe;)14,Sii—, we find that stoichiometry
of crystals keeps at the level y ~ 0.01—0.005 compa-
rable with the absolute error of our EPMA measure-
ments. However, the real concentration z in general case
was noticeably deviating from the nominal one with dis-
crepancy reaching ~ 5% of iron content. For that rea-
son the parameters x characterizing studied samples de
facto are presented in the following consideration. The
third digit in the z number below is used as a reference
and corresponds to average Fe content obtained by sev-

eral scans along the sample surface. It is worth noting
that in the previous studies [2-4] authors referred to
the nominal iron concentration, which may distort the
shape of magnetic phase diagram. The magnetization
and magnetic susceptibility data in magnetic field up to
5T were obtained with a SQUID magnetometer (Quan-
tum Design). The resistivity data p(7T") were measured
by standard DC four probe technique at temperatures
1.8-300 K.

Temperature dependences of the magnetic suscepti-
bility in Mn;_,Fe,Si show clearly (Fig. 1a) that for iron
content exceeding x. ~ 0.24 the x(T") data follow power
law x ~ 1/T¢ with the exponent £ < 1. The parameter &
tends to decrease with z from £ = 0.624+0.02 (z = 0.244)
to & = 0.47 £ 0.01 (x = 0.293). This type of anomaly
is typical for QC behavior and therefore it is necessary
to examine the T—x magnetic phase diagram in more
detail for checking this supposition. In order to recon-
struct magnetic phase diagram from magnetic measure-
ments it is possible to consider two various options. De-
tailed comparison of the dx/0T = f(T) curves with
the magnetic structure data carried in [4] shows that
broad minima A on the 9x/J0T temperature depen-
dences (Fig.1b) correspond to formation of an inter-
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mediate phase, whereas narrow peaks B reflect the on-
set of the helical phase with long-range magnetic order.
Note that for the concentrations exceeding z* = 0.108
peak B disappears while minimum A still exists up
to x.. For x > z. = 0.24 the A minimum is not ob-
served in the studied range of experimental parameters
(Fig. 1b). Another opportunity is based on the applica-
tion of the classical ferromagnetic equation of state to
the case of Mn;_,Fe,Si [3] that results in Arrott plot
procedure (Fig. 1c) with subsequent standard extrapo-
lation of spontaneous magnetization square M? = f(T')
to the value M = 0 (Fig. 1d).

In addition to this extrapolation procedure expected
in Landau theory (Fig.1d) the plot M2 = f(T?) sug-
gested in [3] was also examined. Both methods provide
almost the same characteristic temperatures and there-
fore we will restrict ourselves below by the results of the
standard approach. It is interesting that Arrott analy-
sis gives transition temperatures which lie well above
T, even for x = 0, i.e. in pure MnSi (compare Figs. 1b
and d).

All aforementioned results are summarized in Fig. 2
where various transition points Ts(x) are plotted on the

50
40

301

T (K)

20 -

10

Fig. 2. The map of 9x/9T and T — x magnetic phase dia-
gram. Squares denote transition into the phase with long-
range magnetic order; triangles and circles represent re-
sults of Arrott plot and dx/0T analysis accordingly. The
lines 14 correspond to the analytical model (see text for
details)

background of the Ox /0T = f(z,T) map. Temperatures
obtained from dx /0T minima (circles) and Arrott plots
(triangles) coincidence reasonably for z > 0.05, whereas
for z = 0 Arrott analysis gives Ts(z = 0) close to the in-
flection point of the susceptibility derivative. In general
case the transitions Ty(x) mark broad dx/0T feature
preceding formation of the long range magnetic order
at T.(z) (lines B in Fig.1 and squares in Fig.2). As
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long as ferromagnetism appears at T > T, it is natural
to interpret T as a transition temperature into phase
with short-range magnetic order, which has chiral char-
acter as suggested by structural data [4]. Interestingly,
although exchange interaction is expected to turn to
zero at the same point x* as T.(x) [2] the phase with
short range order (chiral liquid in terminology of [6])
exists up to z. > z* (Fig. 2).

The results obtained suggest a new scenario of quan-
tum criticality in Mn;_,Fe,Si. There are two QC tran-
sitions at 7" = 0: the first one corresponds to transition
between long-range and short range ordered phase at z*,
whereas the second one is located at z. > x* and sepa-
rates the phase with short-range magnetic order and QC
phase with the power divergence of magnetic suscepti-
bility (Fig.2). The QC anomalies at finite temperatures
may be observed only above z. when any types of de-
tectable magnetic order are suppressed because these
anomalies are masked by effects of short-range ordering
at “underlying” point z* (Figs.1 and 2). The consid-
ered quantum bicritical behavior is very unusual and
thus doubly suffers from the statement that magnetic
phase diagram in Fig. 2 is reconstructed from finite (and
rather high) temperature experiments and therefore ex-
trapolation to zero temperature does not seem to be
correct. For elucidating the quantum bicritical scenario
and proving z. as a real QC boundary the simple phe-
nomenological model is proposed below.

We assume that short-range magnetic order phase
in Mnj_,Fe,Si (chiral liquid [6]) develops when fluctu-
ations of the order parameter in the paramagnetic phase
(chiral gas [6]) slow down and freeze. When T — T,(x)
the radius of classical fluctuations Ry increases and
short-range order for z > z* appears when Ry reaches
some critical value. As temperature of the transition into
the phase with long-range magnetic order for x > z*
becomes zero, T.(x) = 0, the same supposition could
be applied to the case of quantum fluctuations [7]. The
conditions of freezing may be expressed as Rfy 2 = R,
where Ry 2 are spatial scales of fluctuations, and R, de-
notes some characteristic length in the considered mate-
rial (the idea of comparison of the characteristic length
scales for magnetic phase transitions in MnSi was ear-
lier introduced in [8]). The considered phase transitions
in Mn;_,Fe,Si are expected to be driven by disorder
effects in the magnetic subsystem, which may be taken
into account in the considered model assuming that Ry
is given by correlation length R, of the infinite percola-
tion cluster |9

l

e = e =

(1)
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In Eq. (1) ! is the minimal length about unit cell size
relevant to the ordered case (r = 0), z. is a percolation
threshold, and v = 0.9 [9].

Using standard expressions for classical and quan-
tum fluctuations [7]

ai

To
=y sy @

we compute temperatures of the transitions into the
phase with short-range order:

Hereafter indexes “1” and “2” denotes classical and
quantum cases respectively. In Egs. (2), (3) §7'(0) =
= T1(0) — T.(0) = (a1/1)*/°T.(0) is the temperature
range of the intermediate phase preceding long-range
ordering at = 0 and 75(0) = (a2/1)Ty. The parame-
ters ap,2 have dimension of length and T} stands for the
energy scale defining quantum fluctuations [7].

In the standard theory of QC phenomena the char-
acteristic concentrations z* and x. coincide |7] and thus
accounting of these two types of fluctuations results
in possible renormalization of the fluctuation region
around T,.. A new type of the magnetic phase diagram
appears in the considered bicritical case when x* # .
and z* < z.. The temperature T>(x) gives a short-range
order “tail” above x*, which disappears at the second
quantum critical point z. in qualitative agreement with
experimentally observed behavior (Fig. 2).

In further calculations a linear approximation
Te(x) = Tc(0)(1 — z/z*) for the transition temperature
into the phase with long-range magnetic order (chiral
solid of [6]) will be used (line I in Fig.2). The param-
eters 07'(0), z* and z. are known from experiment
and if the value of the critical exponent ¢ is fixed
the approximation of experimental data with Egs. (3)
reduces to a computation with the single free parameter
T5(0). The best fit results obtained for § = 1/2 and
T5(0) = 17K are shown in Fig.2 by line 2 denoting
T (z) and line 3 representing T5(x). It is visible that the
proposed model allows reasonably describe magnetic
phase diagram of Mn; _,Fe, Si supporting the suggested
quantum bicritical scenario.

It is interesting that the obtained T5(0) value is very
close to the position of the low temperature anomaly at
~ 15 K discovered recently from the study of the magne-
toresistance and electron spin resonance for pure MnSi
[10, 11]. Within the proposed model this feature may be

linked to the quantum fluctuations effects, i.e. dashed
section of the line 3 in Fig. 2 is expected to correspond
to a real line on the magnetic phase diagram inside chi-
ral solid. It is worth noting that up to now the charac-
teristic point 7' ~ 15K in MnSi had no interpretation.
The considered supposition implies possible co-existence
of the classical and quantum fluctuations below z* sug-
gesting a new phenomenon potentially observable in the
paramagnetic phase. The condition R (T, z) = Rys2(T)
defines the line T,q(x), which can be computed without
introduction of any additional fitting parameters from
the equation

A=22)(z-1), (4)

where z = T,4(z)/Te(z) and A = T»(0)?/6T(0)Te(x).
The result is shown by dashed line 4 in Fig.2. To the
left from the T,,(x) the classical fluctuations dominate
(the region CF in Fig. 2) and to the right from the T,q(x)
the quantum fluctuations rule the paramagnetic phase
(the region QF in Fig. 2).

The O0x/0T data do not show any presence of the
expected T.q(x) (Fig. 2). However the situation changes
for the temperature dependences of the resistivity p(7T').
The experimental p(T') curves for various Mn;_,Fe;Si
samples were fitted by the expression p(T) = p(0)+AT*
and the values of the exponent «(z,T) were used to
draw a(z,T) map. The result together with the mag-
netic phase diagram lines obtained above is plotted in
Fig.3. It is remarkable that apart from the peculiar-
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Fig.3. The map of the exponent a(z,T) in the temper-
ature dependences of resistivity and magnetic phase dia-
gram obtained from magnetic measurements

ities observed in the vicinity of the quantum critical
points at z* and x. as well as around 7,(0) and low tem-
perature anomaly T5(0) the predicted crossover region
between classical and quantum fluctuations is clearly
marked by broad minima of a(z,T) (Fig.3). Thus the
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Teq(z) line expected from the analysis of the magnetic
measurements is detected in the resistivity data. In or-
der to explain this behavior, first of all, it is necessary
to take into account that the 9x /0T map corresponds
to the averaged picture, which is not affected by fluc-
tuations unless they freeze out. The case of resistivity
is different. Recent investigation showed that magnetic
scattering dominates in transport properties of MnSi
[11] and hence scattering on magnetic fluctuations will
affect resistivity data. Thus the visualization of a new
line dividing classical and quantum fluctuations just in
a(z,T) gets natural explanation.

At present, magnetic properties of MnSi-based com-
pound could be understood either within itinerant mod-
els or within a model of the Heisenberg-type localized
magnetic moments [10,11]. In the former case, the rea-
son for suppression of the long-range magnetic order
at z* is a decrease of on-site Hubbard repulsion [5].
In Heisenberg-type models [2—4,10-12] the transition
between chiral solid and chiral liquid states may be
caused by competition between frustration expected for
RKKY interaction, which orient spin spirals along (110)
axis [12], whereas DM interaction favors (111) direc-
tion [2, 4]. Under this assumption it is also possible to
suppose that classical fluctuations are mainly driven by
exchange interaction, while quantum fluctuations may
originate from DM interaction and thus could exist in
the whole concentration range [2].

The suggested percolation description of the mag-
netic phase diagram for z > 2* means that bounding
of the Mn;_,Fe,Si magnetic subsystem breaks at the
percolation threshold and for z > z. the magnetic sub-
system should consist of separate spin clusters. Conse-
quently, it is reasonable to expect that the observed QC
phase (region QC in Figs.2,3) is nothing but Griffiths
phase [13, 14]. The experimental values of the magnetic
susceptibility critical exponents & ~ 0.5-0.6 (Fig. 1) are
close to those ones expected in the mean-field approx-
imation [15] and hence the aforementioned supposition
at least does not contradict the experimental data.

In conclusion, the combination of magnetic sus-
ceptibility and resistivity data together with the pro-
posed model strongly supports suggested quantum bi-
critical T' — x magnetic phase diagram of Mn;_,Fe,Si.
The “underlying” QC point z* ~ 0.11, although being
masked by short-range order phase, manifests itself by
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the crossover between classical and quantum fluctua-
tions, which is predicted and observed experimentally
in the paramagnetic phase. The second quantum critical
point z. ~ 0.24 may have topological nature and cor-
responds to percolation threshold in the magnetic sub-
system of Mn;_,Fe,Si. Above x. the transition into the
short-range ordered phase is suppressed and magnetic
subsystem becomes separated into spin clusters result-
ing in the disorder-driven QC phase with anomalously
divergent magnetic susceptibility.
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