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The T−x magnetic phase diagram of Mn1−xFexSi solid solutions is probed by magnetic susceptibility,

magnetization and resistivity measurements. The boundary limiting phase with short-range magnetic order

(analogue of the chiral liquid) is defined experimentally and described analytically within simple model ac-

counting both classical and quantum magnetic fluctuations together with effects of disorder. It is shown that

Mn1−xFexSi system undergoes a sequence of two quantum phase transitions. The first “underlying"quantum

critical (QC) point x∗ ∼ 0.11 corresponds to disappearance of the long-range magnetic order. This quantum

phase transition is masked by short-range order phase, however, it manifests itself at finite temperatures by

crossover between classical and quantum fluctuations, which is predicted and observed in the paramagnetic

phase. The second QC point xc ∼ 0.24 may have topological nature and corresponds to percolation thresh-

old in the magnetic subsystem of Mn1−xFexSi. Above xc the short-range ordered phase is suppressed and

magnetic subsystem becomes separated into spin clusters resulting in observation of the disorder-driven QC

Griffiths-type phase characterized by an anomalously divergent magnetic susceptibility χ ∼ 1/T ξ with the

exponents ξ ∼ 0.5−0.6.
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Since mid-eighties it is known that substitution of

manganese with iron in Mn1−xFexSi isostructural solid

solutions suppresses transition temperature into heli-

cal state Tc and leads to disappearance of spontaneous

magnetic moment in the range 0.1 < x < 0.2 [1]. Re-

cent studies revealed that the zero value Tc(x) = 0

may be reached for x∗ = 0.12 – 0.15 [2, 3]. Neutron

diffraction experiments showed that rise of x results in

decrease of exchange energy, whereas Dzyaloshinskii–

Moriya (DM) interaction does not depend on sample

composition [2]. The opportunity to satisfy condition

Tc(x
∗) = 0 opens the door to quantum phase transition

and observation of the quantum critical (QC) phenom-

ena in Mn1-xFexSi. In Ref. [3] authors argue that QC

transition in Mn1−xFexSi exists but has “underlying”

nature [3]. In practice this statement means that QC

point (if any) is located inside some intermediate phase

surrounding the Tc(x) line on the magnetic phase dia-

gram. Existence of the intermediate phases of presum-

ably fluctuating nature for T > Tc(x) in Mn1−xFexSi

was also reported in [4]. Besides, recent theoretical con-
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sideration of the magnetic properties of MnSi within

Hubbard model [5] showed that weakening of the on-

site repulsion induces transformation of the spiral phase

with long-range magnetic order to the partially ordered

or fluctuation-driven spiral phase. The considered be-

havior is very similar to that one caused by chiral con-

densation effects in quantum helimagnets [6].

The aforementioned theoretical scenarios [5, 6] as

well as some experimental results [3] show that QC phe-

nomena in Mn1−xFexSi compounds may be hidden due

to formation of the intermediate magnetic phases so that

no pronounced anomalies for finite temperatures at QC

point (like divergent magnetic susceptibility) should ex-

ist. Indeed, no specific effects at T 6= 0, which mark un-

ambiguously QC region, have been reported up to now

for Mn1−xFexSi. From the other hand, the absence of

experimentally observed QC anomalies puts into ques-

tion applicability of any QC model to this system with

anisotropic antisymmetric magnetic interactions.

In the present work the T−x magnetic phase dia-

gram of Mn1−xFexSi solid solutions is revisited. We ar-

gue that Mn1−xFexSi undergoes a sequence of two quan-

tum phase transitions. In contrast to previous findings,
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Fig. 1. Magnetic susceptibility (a) and ∂χ/∂T (b) in Mn1−xFexSi solid solutions. In the panel (b) peaks A and B correspond

to short-range and long-range magnetic ordering, respectively. The legend in the penels (a)–(b) denotes iron concentrations.

Arrott plots for MnSi (c) and examples of temperature dependences of the spontaneous magnetization square for Mn1−xFexSi

(d). The digits near curves in the panel (c) mark corresponding temperatures

the first underlying QC point x∗ ∼ 0.11 is not com-

pletely masked by the intermediate short-ordered phase

and manifests itself at finite temperatures by crossover

between classical and quantum fluctuations. The second

QC point located at xc ∼ 0.24 marks onset of the low

temperature power divergence of the magnetic suscep-

tibility χ ∼ 1/T ξ and may have a topological nature.

Single crystals of Mn1−xFexSi solid solutions in the

range x < 0.3 were synthesized by both Czochral-

ski and Bridgeman methods. The quality of the sam-

ples was controlled by the X-ray Laue diffraction. As

long as real iron content in obtained crystal may dif-

fer from nominal x value in initial ingot, all samples

were examined by EPMA. Assuming composition for-

mula (Mn1−xFex)1+ySi1−y we find that stoichiometry

of crystals keeps at the level y ∼ 0.01−0.005 compa-

rable with the absolute error of our EPMA measure-

ments. However, the real concentration x in general case

was noticeably deviating from the nominal one with dis-

crepancy reaching ∼ 5% of iron content. For that rea-

son the parameters x characterizing studied samples de

facto are presented in the following consideration. The

third digit in the x number below is used as a reference

and corresponds to average Fe content obtained by sev-

eral scans along the sample surface. It is worth noting

that in the previous studies [2–4] authors referred to

the nominal iron concentration, which may distort the

shape of magnetic phase diagram. The magnetization

and magnetic susceptibility data in magnetic field up to

5 T were obtained with a SQUID magnetometer (Quan-

tum Design). The resistivity data ρ(T ) were measured

by standard DC four probe technique at temperatures

1.8 – 300K.

Temperature dependences of the magnetic suscepti-

bility in Mn1−xFexSi show clearly (Fig. 1a) that for iron

content exceeding xc ∼ 0.24 the χ(T ) data follow power

law χ ∼ 1/T ξ with the exponent ξ < 1. The parameter ξ

tends to decrease with x from ξ = 0.62±0.02 (x = 0.244)

to ξ = 0.47 ± 0.01 (x = 0.293). This type of anomaly

is typical for QC behavior and therefore it is necessary

to examine the T−x magnetic phase diagram in more

detail for checking this supposition. In order to recon-

struct magnetic phase diagram from magnetic measure-

ments it is possible to consider two various options. De-

tailed comparison of the ∂χ/∂T = f(T ) curves with

the magnetic structure data carried in [4] shows that

broad minima A on the ∂χ/∂T temperature depen-

dences (Fig. 1b) correspond to formation of an inter-
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mediate phase, whereas narrow peaks B reflect the on-

set of the helical phase with long-range magnetic order.

Note that for the concentrations exceeding x∗ = 0.108

peak B disappears while minimum A still exists up

to xc. For x > xc = 0.24 the A minimum is not ob-

served in the studied range of experimental parameters

(Fig. 1b). Another opportunity is based on the applica-

tion of the classical ferromagnetic equation of state to

the case of Mn1−xFexSi [3] that results in Arrott plot

procedure (Fig. 1c) with subsequent standard extrapo-

lation of spontaneous magnetization square M2 = f(T )

to the value M = 0 (Fig. 1d).

In addition to this extrapolation procedure expected

in Landau theory (Fig. 1d) the plot M2 = f(T 2) sug-

gested in [3] was also examined. Both methods provide

almost the same characteristic temperatures and there-

fore we will restrict ourselves below by the results of the

standard approach. It is interesting that Arrott analy-

sis gives transition temperatures which lie well above

Tc even for x = 0, i.e. in pure MnSi (compare Figs. 1b

and d).

All aforementioned results are summarized in Fig. 2

where various transition points Ts(x) are plotted on the

Fig. 2. The map of ∂χ/∂T and T − x magnetic phase dia-

gram. Squares denote transition into the phase with long-

range magnetic order; triangles and circles represent re-

sults of Arrott plot and ∂χ/∂T analysis accordingly. The

lines 1–4 correspond to the analytical model (see text for

details)

background of the ∂χ/∂T = f(x, T ) map. Temperatures

obtained from ∂χ/∂T minima (circles) and Arrott plots

(triangles) coincidence reasonably for x > 0.05, whereas

for x = 0 Arrott analysis gives Ts(x = 0) close to the in-

flection point of the susceptibility derivative. In general

case the transitions Ts(x) mark broad ∂χ/∂T feature

preceding formation of the long range magnetic order

at Tc(x) (lines B in Fig. 1 and squares in Fig. 2). As

long as ferromagnetism appears at Ts > Tc it is natural

to interpret Ts as a transition temperature into phase

with short-range magnetic order, which has chiral char-

acter as suggested by structural data [4]. Interestingly,

although exchange interaction is expected to turn to

zero at the same point x∗ as Tc(x) [2] the phase with

short range order (chiral liquid in terminology of [6])

exists up to xc > x∗ (Fig. 2).

The results obtained suggest a new scenario of quan-

tum criticality in Mn1−xFexSi. There are two QC tran-

sitions at T = 0: the first one corresponds to transition

between long-range and short range ordered phase at x∗,

whereas the second one is located at xc > x∗ and sepa-

rates the phase with short-range magnetic order and QC

phase with the power divergence of magnetic suscepti-

bility (Fig. 2). The QC anomalies at finite temperatures

may be observed only above xc when any types of de-

tectable magnetic order are suppressed because these

anomalies are masked by effects of short-range ordering

at “underlying” point x∗ (Figs. 1 and 2). The consid-

ered quantum bicritical behavior is very unusual and

thus doubly suffers from the statement that magnetic

phase diagram in Fig. 2 is reconstructed from finite (and

rather high) temperature experiments and therefore ex-

trapolation to zero temperature does not seem to be

correct. For elucidating the quantum bicritical scenario

and proving xc as a real QC boundary the simple phe-

nomenological model is proposed below.

We assume that short-range magnetic order phase

in Mn1−xFexSi (chiral liquid [6]) develops when fluctu-

ations of the order parameter in the paramagnetic phase

(chiral gas [6]) slow down and freeze. When T → Tc(x)

the radius of classical fluctuations Rf1 increases and

short-range order for x > x∗ appears when Rf1 reaches

some critical value. As temperature of the transition into

the phase with long-range magnetic order for x > x∗

becomes zero, Tc(x) ≡ 0, the same supposition could

be applied to the case of quantum fluctuations [7]. The

conditions of freezing may be expressed as Rf1,2 = Rs,

where Rf1,2 are spatial scales of fluctuations, and Rs de-

notes some characteristic length in the considered mate-

rial (the idea of comparison of the characteristic length

scales for magnetic phase transitions in MnSi was ear-

lier introduced in [8]). The considered phase transitions

in Mn1−xFexSi are expected to be driven by disorder

effects in the magnetic subsystem, which may be taken

into account in the considered model assuming that Rs

is given by correlation length Rc of the infinite percola-

tion cluster [9]

Rs = Rc(x) =
l

(1 − x/xc)ν
. (1)
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In Eq. (1) l is the minimal length about unit cell size

relevant to the ordered case (x = 0), xc is a percolation

threshold, and ν = 0.9 [9].

Using standard expressions for classical and quan-

tum fluctuations [7]

Rf1 =
a1

(T/Tc − 1)δ
; Rf2 = a2

T0

T
(2)

we compute temperatures of the transitions into the

phase with short-range order:

T1(x) =Tc(x)

[

1 +
δT (0)

Tc(0)

(

1−
x

xc

)ν/δ
]

;

T2(x) = T2(0)

(

1−
x

xc

)ν

.

(3)

Hereafter indexes “1” and “2” denotes classical and

quantum cases respectively. In Eqs. (2), (3) δT (0) =

= T1(0) − Tc(0) = (a1/l)
1/δTc(0) is the temperature

range of the intermediate phase preceding long-range

ordering at x = 0 and T2(0) = (a2/l)T0. The parame-

ters a1,2 have dimension of length and T0 stands for the

energy scale defining quantum fluctuations [7].

In the standard theory of QC phenomena the char-

acteristic concentrations x∗ and xc coincide [7] and thus

accounting of these two types of fluctuations results

in possible renormalization of the fluctuation region

around Tc. A new type of the magnetic phase diagram

appears in the considered bicritical case when x∗ 6= xc

and x∗ < xc. The temperature T2(x) gives a short-range

order “tail” above x∗, which disappears at the second

quantum critical point xc in qualitative agreement with

experimentally observed behavior (Fig. 2).

In further calculations a linear approximation

Tc(x) = Tc(0)(1 − x/x∗) for the transition temperature

into the phase with long-range magnetic order (chiral

solid of [6]) will be used (line 1 in Fig. 2). The param-

eters δT (0), x∗ and xc are known from experiment

and if the value of the critical exponent δ is fixed

the approximation of experimental data with Eqs. (3)

reduces to a computation with the single free parameter

T2(0). The best fit results obtained for δ = 1/2 and

T2(0) = 17K are shown in Fig. 2 by line 2 denoting

T1(x) and line 3 representing T2(x). It is visible that the

proposed model allows reasonably describe magnetic

phase diagram of Mn1−xFexSi supporting the suggested

quantum bicritical scenario.

It is interesting that the obtained T2(0) value is very

close to the position of the low temperature anomaly at

∼ 15K discovered recently from the study of the magne-

toresistance and electron spin resonance for pure MnSi

[10, 11]. Within the proposed model this feature may be

linked to the quantum fluctuations effects, i.e. dashed

section of the line 3 in Fig. 2 is expected to correspond

to a real line on the magnetic phase diagram inside chi-

ral solid. It is worth noting that up to now the charac-

teristic point T ∼ 15K in MnSi had no interpretation.

The considered supposition implies possible co-existence

of the classical and quantum fluctuations below x∗ sug-

gesting a new phenomenon potentially observable in the

paramagnetic phase. The condition Rf1(T, x) = Rf2(T )

defines the line Teq(x), which can be computed without

introduction of any additional fitting parameters from

the equation

A = z2/(z − 1), (4)

where z = Teq(x)/Tc(x) and A = T2(0)
2/δT (0)Tc(x).

The result is shown by dashed line 4 in Fig. 2. To the

left from the Teq(x) the classical fluctuations dominate

(the region CF in Fig. 2) and to the right from the Teq(x)

the quantum fluctuations rule the paramagnetic phase

(the region QF in Fig. 2).

The ∂χ/∂T data do not show any presence of the

expected Teq(x) (Fig. 2). However the situation changes

for the temperature dependences of the resistivity ρ(T ).

The experimental ρ(T ) curves for various Mn1−xFexSi

samples were fitted by the expression ρ(T ) = ρ(0)+ATα

and the values of the exponent α(x, T ) were used to

draw α(x, T ) map. The result together with the mag-

netic phase diagram lines obtained above is plotted in

Fig. 3. It is remarkable that apart from the peculiar-

Fig. 3. The map of the exponent α(x, T ) in the temper-

ature dependences of resistivity and magnetic phase dia-

gram obtained from magnetic measurements

ities observed in the vicinity of the quantum critical

points at x∗ and xc as well as around Tc(0) and low tem-

perature anomaly T2(0) the predicted crossover region

between classical and quantum fluctuations is clearly

marked by broad minima of α(x, T ) (Fig. 3). Thus the
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Teq(x) line expected from the analysis of the magnetic

measurements is detected in the resistivity data. In or-

der to explain this behavior, first of all, it is necessary

to take into account that the ∂χ/∂T map corresponds

to the averaged picture, which is not affected by fluc-

tuations unless they freeze out. The case of resistivity

is different. Recent investigation showed that magnetic

scattering dominates in transport properties of MnSi

[11] and hence scattering on magnetic fluctuations will

affect resistivity data. Thus the visualization of a new

line dividing classical and quantum fluctuations just in

α(x, T ) gets natural explanation.

At present, magnetic properties of MnSi-based com-

pound could be understood either within itinerant mod-

els or within a model of the Heisenberg-type localized

magnetic moments [10, 11]. In the former case, the rea-

son for suppression of the long-range magnetic order

at x∗ is a decrease of on-site Hubbard repulsion [5].

In Heisenberg-type models [2 –4, 10–12] the transition

between chiral solid and chiral liquid states may be

caused by competition between frustration expected for

RKKY interaction, which orient spin spirals along (110)

axis [12], whereas DM interaction favors (111) direc-

tion [2, 4]. Under this assumption it is also possible to

suppose that classical fluctuations are mainly driven by

exchange interaction, while quantum fluctuations may

originate from DM interaction and thus could exist in

the whole concentration range [2].

The suggested percolation description of the mag-

netic phase diagram for x > x∗ means that bounding

of the Mn1−xFexSi magnetic subsystem breaks at the

percolation threshold and for x > xc the magnetic sub-

system should consist of separate spin clusters. Conse-

quently, it is reasonable to expect that the observed QC

phase (region QC in Figs. 2, 3) is nothing but Griffiths

phase [13, 14]. The experimental values of the magnetic

susceptibility critical exponents ξ ∼ 0.5 – 0.6 (Fig. 1) are

close to those ones expected in the mean-field approx-

imation [15] and hence the aforementioned supposition

at least does not contradict the experimental data.

In conclusion, the combination of magnetic sus-

ceptibility and resistivity data together with the pro-

posed model strongly supports suggested quantum bi-

critical T − x magnetic phase diagram of Mn1−xFexSi.

The “underlying” QC point x∗ ∼ 0.11, although being

masked by short-range order phase, manifests itself by

the crossover between classical and quantum fluctua-

tions, which is predicted and observed experimentally

in the paramagnetic phase. The second quantum critical

point xc ∼ 0.24 may have topological nature and cor-

responds to percolation threshold in the magnetic sub-

system of Mn1−xFexSi. Above xc the transition into the

short-range ordered phase is suppressed and magnetic

subsystem becomes separated into spin clusters result-

ing in the disorder-driven QC phase with anomalously

divergent magnetic susceptibility.
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