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Abstract
We consider crystal and magnetic chiral structures for MnSi and isostructural metal silicides,
where a complete set of structural and magnetic measurements allows us to define both
magnetic and structural chiral configurations. We show that magnetic symmetry inherits
chirality from the crystal structure. We derive, with emphasis on symmetry arguments, a new
type of magneto-structural relation, namely a symmetrized coupling between structural and
magnetic chiralities that provides a structural control on the magnetic chirality.

S Online supplementary data available from stacks.iop.org/JPhysCM/24/366005/mmedia

1. Introduction

A chiral structure is a spatial distribution of charge or spin
density that does not coincide with its mirror image after any
combination of rotations and translations. A chiral medium
is optically active and rotates the polarization of light; a
magnetic field also affects optical activity. A link between
the two phenomena is called magneto-chiral dichroism [1].
This effect promises new control over magnetic properties
and is expected to be enhanced in molecular magnets if both
crystal and magnetic structures are chiral [2]. However, even
for an enantiopure chiral crystal, the relationship between
crystallographic and magnetic chiralities is not definitely
established. First, chiral magnetic structures have been
observed for non-chiral crystals, where magnetic spirals in Ho
(space group P63/mmc) may serve as an example [3].

Second, for many magnetic materials, even if they are
crystallized in a chiral space group, their absolute structure
cannot be measured with polarized light but requires a special
single crystal x-ray diffraction experiment at the wavelength
providing significant resonant contribution to violate Friedel’s
law [4]; most chiral magnetic materials have not been tested
in this way so far. Finally, the absolute configuration of a
magnetic structure also has to be defined with the help of
polarized neutrons, either with small angle diffraction [5, 6]
or with spherical neutron polarimetry [7]; neither option is
widely available yet.

The symmetry of a crystal allows for chirality only
if the space group does not contain symmetry elements
of the second kind—inversion, rotoinversions, and mirror
planes [4]. Symmetry also provides a link between structure
and magnetism, via corresponding coupling terms in the
phenomenological expressions for the free energy. Here
we explore this link for a chiral crystal structure where
magnetic structure is stabilized by Dzyaloshinskii–Moriya
interaction. More specifically, we focus on MnxFe1−xSi and
isostructural FexCo1−xSi compounds where a complete set
of structural and magnetic measurements allows us to define
both magnetic and structural absolute configurations [6, 8].
The handedness of the magnetic helix (the magnetic chiral
structure found for MnSi) has been recently correlated with
chiral crystal structure [8, 9]. The correlation has been
proved experimentally on a limited number of crystals;
here we support these findings with theoretical arguments
and show that correspondence between two chiral structures
is a general consequence of the symmetry. We show, in
agreement with experiment, a new type of magneto-structural
relation, namely symmetrized coupling between structural
and magnetic chirality that enables structural control on
magnetic properties recently reported in [9].

The paper is organized as follows. First, we review the
crystal structure and symmetry of MnSi. Then we analyse new
symmetries appearing on deformation of the Mn sublattice;
we introduce an archetypal symmetry needed for proper
phenomenological expression for the free energy, and define
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the structural chirality. Magnetic chirality and the coupling
with the structural chirality are discussed in the next part,
followed by a conclusion.

2. Crystallographic structure and its chirality

2.1. Crystal structure

Pure MnSi, FeSi, their solid solutions and analogues doped
with Co belong to the B20 structural type with the space
group P213 [6, 9, 10]; this group does not contain symmetry
operations of the second kind and therefore corresponds to
a chiral crystal structure. Both transition metal and silicon
atoms occupy Wyckoff position 4a:

4(a) : R1(u, u, u);

R2 (0.5+ u, 0.5− u,−u);

R3 (−u, 0.5+ u, 0.5− u);

R4 (0.5− u,−u, 0.5+ u)

(1)

with u = 0.113 05(10) for Mn and u = 0.4044(2) for Si, or
u = 0.887 04(16) for Mn and u = 0.5954(3) for Si (atomic
positions are taken from crystallographic data collected for
crystals discussed in [9]). These two sets of coordinates are
characteristic for two enantiomeric structures that could be
transformed one into another by inversion.

It is worth noting that in the literature one finds different
numberings for the positions R1–R4 in the B20 structure.
This variety reflects the orientation ambiguities due to lower
point symmetry of the structure as compared with the
lattice [11]. In order to provide a unifying reference we use
hereafter a standard setup from the International Tables for
X-ray Crystallography [12]. The value found in the literature
for MnSi, u = 0.137–0.138 for Mn, corresponds to u =
0.113–0.112 in our setting.

The unit cells can easily be imagined by setting the Me–Si
pairs into the fcc lattice sites but orienting these motifs along
〈111〉 axes at four different sites [0, 0, 0], [0.5, 0.5, 0], [0,
0.5, 0.5], and [0.5, 0, 0.5]. A convenient, albeit not unique,
way to illustrate the difference between two enantiomers is an
inspection of a helix propagating along 〈111〉 and built from
Mn or Si atoms; two structures have helices of opposite sense.

The transition metal atoms forming a helix are skewing
around 〈111〉 in the left-handed configuration for u =
0.113 05(10) and in the right-handed configuration for u =
0.887 04(16). The Si atoms form a similar, but left-handed,
helix around 〈111〉, in accordance to its parameter uSi =

0.5954(3), and the right-handed configuration for uSi =

0.4044(2).
As expected for a chiral structure, two enantiomers

cannot be superimposed by a rotation, translation or any
combination of these two operations. Two enantiomers
can be transformed one to another by inversion, and the
corresponding transformation is given by [−1 0 0, 0−1 0, 0 0
−1]; for a single sublattice of Mn or Si this transformation
simply implies change of u to (1 − u) in equation (1). In
order to distinguish between two structures we call them ‘left’
and ‘right’ according to the sense of spiral propagating along
〈111〉 and built from silicon atoms.

Figure 1. Symmetry of a single sublattice in the B20 structure as a
function of atomic position (u, u, u). L and R stand for left- and
right-handed versions according to the definition given in the text.
Arrows indicate values where symmetry differs from P213.

2.2. A structural archetype for the B20 structure

For a single sublattice, Mn or Si, the symmetry depends on
the parameter u (figure 1). As we have seen in section 2.1,
u and (1 − u) correspond to P213 domains of the opposite
chirality. It is easy to see that u = 0, 0.25, 0.5, 0.75 form a
structure with Fm3̄m symmetry; this is the B2 structure type.
It can be also shown, by using equation (1) and analysing the
corresponding arrangement of atoms, that u = 0.125 (0.325)
sets P4332 (P4132) symmetry; notably, these two groups
correspond to structures of the opposite chirality. A relation
between all these symmetries can be readily found with help
of an archetypal structure that would also link phenomena of
a different nature observed for a crystal.

Among all possible structures listed above, the hypothet-
ical B2 structure has the highest symmetry and, therefore,
can be considered as an archetype for B20 crystals. The
archetype consists of two interpenetrating face-centred cubic
(fcc) sublattices (Wyckoff positions 4(a) and 4(b) for Fm3̄m)
filled by different atoms. In our case, one of them contains
magnetic atoms (Mn or disordered mixtures like Fe/Co or
Mn/Fe); the other one is a non-magnetic Si sublattice.

Without loss of generality, let us focus on the
magnetic metal counterpart. A straightforward group-
theoretical procedure which starts from the archetypal
symmetry Fm3̄m allows us to conclude that a conjectural
phase transition Fm3̄m (Z = 1) to P213 (Z = 4) (here
Z is the number of formula units in a primitive but not
Bravais unit cell), corresponding to the B2 to B20 structural
phase transition, would be induced by a six-component order
parameter (OP) (see, for example, [13]). The OP belongs to
the point X (three-armed vector star k(1) = (b1 + b2)/2) of
the face-centred Brillouin zone (BZ), it spans six-dimensional
irreducible representation X−5 .

The relevant mechanical (displacive) representation M of
Fm3m should be constructed at the X point of the BZ and on
the site positions of the fcc lattice, i.e. positions (1) with u= 0,

1 : (0, 0, 0, ); 2 : (0.5, 0.5, 0);

3 : (0, 0.5, 0.5); 4 : (0.5, 0, 0.5).
(2)
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It reduces to two irreducible representations, M(a) = X−2 +X−5 ,
which correspond to longitudinal (LO) and transverse (TO)
optical phonons, respectively. The basis functions for the
three-dimensional X−2 and six-dimensional X−5 are:

X−2 : ψ1 = z1 + z2 − z3 − z4,

ψ2 = y1 − y2 − y3 + y4,

ψ3 = x1 − x2 + x3 − x4;

X−5 : ϕ1 = x1 + x2 − x3 − x4,

ϕ2 = y1 + y2 − y3 − y4,

ϕ3 = z1 − z2 − z3 + z4,

ϕ4 = x1 − x2 − x3 + x4,

ϕ5 = y1 − y2 + y3 − y4,

ϕ6 = z1 − z2 + z3 − z4 .

(3)

Here xi, yi and zi are projections of the displacements for the
atom number i from (2).

The distortions induced by the OP X−5 in the phase
P213 are identified by the following relations between
the OP components ηι (see, for example, [13], and
supplementary material available at stacks.iop.org/JPhysCM/
24/366005/mmedia, equation (1)):

η1 = η3 = η5 6= 0↔ ϕ1 = ϕ3 = ϕ5 6= 0

η2 = η4 = η6 = 0↔ ϕ2 = ϕ4 = ϕ6 = 0.
(4)

The relations in (4) minimize the corresponding free energy
and stabilize the B20 structure. Combining equations (3) and
(4), one finds that the shifts of all atoms in the distorted
P213 structure are equal: xi = yj = zk = u (i, j, k are from 1
to 4). Thus, the relevant transformation mechanism consists
of symmetrized combinations of atomic displacements which
have the same symmetry properties as eigenvectors of TO
phonons in the X point of the BZ (figure 2). However,
at variance with a displacive transition induced by a soft
mode, the atomic displacements are not small. Moreover, the
transformation between the archetypal B2 structure and the
one corresponding to the special value u = 0.125 is of a
reconstructive type because for its space groups Fm3̄m and
P4332 (or P4132) there is no group–subgroup relation.

2.3. Phase transitions in the B2 structure

Let us follow the phenomenological scheme developed earlier
for the displacive reconstructive phase transitions [14, 15],
which are specified by non-small atomic shifts breaking the
group–subgroup relationship for neighbouring phases. The
order parameter was shown to be a periodic function of
the atomic displacements [14], and we can deduce a similar
function for the X−5 OP, which should express the periodic
distortion of the archetypal fcc structure as a function of the
magnitude of the displacements u (see equation (1)).

The conditions on the OP components established by
equation (4), which minimize the free energy, significantly
simplify our task. First, the equality of three OP components
allows us to introduce only one scalar variable parameter
η = η1 = η3 = η5 which is now an effective OP. Second, the

Figure 2. Order parameter for the B2–B20 structural
transformation seen for the magnetic metal sublattice. Full and open
circles correspond to the B2 structure (u = 0.0 and 0.25). Grey
circles represent the B20 structure (numbering of atoms is in
accordance with equation (1)). Positions of atoms at u = 0.125 are
shown as greyish-filled circles.

corresponding equality of the basis functions ϕ1 = ϕ3 = ϕ5
fixes the directions of atomic displacements to the 〈111〉-type
and reduces the set of vector variables to a scalar u. This is
the modulus of the corresponding displacement vector 1ri =

ni · u, where ni is a unit vector in the direction 〈111〉.
Following a general procedure [15], after subtraction

of the density wave corresponding to atomic planes in the
distorted structure from that in the parent B2 structure, we
obtain the following periodic function

η(u) = A sin(4πu), (5)

where η is the above defined effective phenomenological
OP and A is a normalizing coefficient. Figure 3 shows the
antiparallel shifting mechanism in one of the sublattices of
B2 corresponding to OP X−5 whose magnitude is defined by
the periodic function (5).

One sees that the parent B2 structure corresponds to u =
0, 0.25, 0.5, 0.75, positions where η = 0 in accordance with
the OP definition. Magnitudes of displacement u = 0.125,
0.375, 0.675, . . . correspond to a new structure characterized
by the equidistant arrangement of the split atomic planes. Its
space group P4332 (or P4132) (Z = 4) is not a subgroup of
Fm3̄m (Z = 1). For all other displacements, the structure of
the crystal is lowered to the B20 structure (space group P213),
which corresponds to the maximal sub-structure common to
Fm3̄m and P4332 structures (figure 1).

Let us emphasize that the above consideration is equally
valid for both fcc sublattices and, therefore, for the entire
B2 structure. This formal transformation scheme provides a
necessary basis for analysing variations of the structure and
magnetic chirality in B20 compounds.
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Figure 3. Antiparallel displacement mechanism which leads from the Fm3̄m structure (u = 0.000) to P4332 (u = 0.125). The figure with
u = 0.250 represents an antiphase domain of the Fm3̄m parent structure.

2.4. Chirality of the crystal structure

In recent combined single crystal neutron scattering and x-ray
diffraction experiments [6, 8], it was shown that the sense of
the spin helix in MnSi and Fe1−xCoxSi compounds correlates
with the absolute crystal structure. In order to parameterize
the coupling between magnetic and structure chiralities, we
define in the following structural chirality not as a property
but as a parameter.

In earlier publications, several definitions have been
introduced for the chirality. Imposing no intrinsic contradic-
tions, vector, pseudo-vector and pseudoscalar values were
used for characterizing different properties of chiral systems.
The choice is predetermined by the goal: whether one focuses
on structural effects (the (pseudo)vector characteristic of a
helix is sufficient), or one aims to discuss the free energy of a
system and the coupling of chiral effects of different natures
(pseudoscalar chirality is appropriate). Our consideration falls
to the latter category.

It is well understood that structures belonging to space
groups that lack inversion centres, reflection planes, glide
planes or rotatory-inversion axes can contain chiral objects.
On the one hand, these latter can be chiral molecules, and
their proper chirality predetermines the chirality of the crystal
structure. On the other hand, even in a system of non-chiral
atoms and ions fragments with a chiral structure can be built
up. A tutorial example is structure of two chiral twin domains
of α-quartz with P3121 and P3221 symmetry. It can be
related to P6422 and P6222 domains of the high temperature
β-quartz; chirality has therefore been retained in the phase
transition between two quartz polymorphs. In contrast, the
transition between B2 and B20 structures related via X−5

OP is a transition between achiral and chiral structures, thus
assuming that corresponding OP should assure the property
of chirality. Figure 4 shows the arrangement of the original
fcc sublattice of magnetic atoms in the three cubic structures:
the parent B2 (u = 0.000), and two distorted P213 domains,
corresponding to the different signs of the OP η (u = 0.050
and −0.050).

One can see that, depending on the sign of OP, the shifted
atoms are organized in either right-handed or left-handed
helices. It should be specially emphasized that the four atoms
enumerated in (1) and shown in figure 2 constitute flat
triangles having no chiral arrangement. The helices are built
up with atoms belonging to different triangles from different
cubic unit cells (figure 4). The helices, therefore, fill one of
the triangular prisms, containing either a screw three-fold axis
31 or 32 = 3−1 of the corresponding space group, the other
prism remaining empty. Thus, the structures distorted towards
a closer, denser surrounding of certain screw rotation axes
show disproportion of partial chiralities of different signs.
It should be noted, however, that in the framework of the
formal geometry the entire crystal structure does not show
any ‘disequilibria’ as both the symmetry elements, clockwise
rotation 31 and anti-clockwise 32 = 3−1 , act on the space
group positions. However, in physical consideration of real
structures, the above difference in the atomic arrangement
might play a crucial role.

We define the integral chirality of a sublattice (structure)
as a sum of the partial chiralities of atomic configurations
confined in two cell prisms (figure 4):

hS = h+S + h−S , (6)

where the sign ‘+’ or ‘−’ coincides with the sign of the shifts
in equation (1) or, in the other terms, with the sign of the

4
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Figure 4. Hexagonal (h) setting of cubic (c) structures P213 (u = 0.050 and −0.050) and Fm3̄m (u = 0.000). Numbering of atoms
corresponds to equation (1). Vectors [hkl]c at Ri indicate to which unit cell the corresponding position belongs.

order parameter η (5). The partial chirality we define as a dot
product between the axial vector [Rji×Rjk] and the unit vector
U[111]. Vectors Rji = Rj − Ri (see equation (1)) connect the
nearest atoms from sequential layers in the structure (figure 4),
and their vector product characterizes the direction of rotation
in a helix when going up from a lower to a higher layer. The
terms ‘lower’ and ‘higher’ are fixed by the direction of U[111],
and the above dot product is a scalar projection of the axial
vector on the lattice direction 〈111〉.

In the case of positive shifts u (right panel in figure 4)
h−S = 0 (no atoms in the corresponding prism), and hS = h+S :

hS = h+S = U[111] · [R34 × R32]. (7)

For negative shifts (left panel in figure 3) h+S = 0, and hS
reads:

hS = h−S = U[111] · [R32 × R34]. (8)

A few properties of hS are worth noting. First, in full
agreement with symmetry properties of chiral objects, the
chirality hS is a pseudoscalar, as it resulted from the dot
product of a vector (U) and a pseudo-vector (axial vector
[Rji × Rjk]). Second, in full agreement with our expectations
the structure chirality reverses its sign with change of the
direction of atomic shifts:

h+S = U[111] · [Rjk × Rji]

= −U[111] · [Rji × Rjk] = −h−S . (9)

Finally, structure chirality vanishes (hS = 0) in the
centrosymmetric parent phase as the atoms are equally present
in both the prisms, i.e. |h+S | = |h

−

S |.
It should be emphasized that the definition in (6)–(8)

cannot be used as a quantitative one but reflects only the
symmetry properties of the corresponding parameters.

2.5. Order parameter and chirality

Equation (1) and figure 2, on the one hand, and equations
(7)–(9), on the other, indicate (see also supplementary
material available at stacks.iop.org/JPhysCM/24/366005/
mmedia) a functional link between the OP η(u) of the
B2–B20 structural phase transition and the structure chirality

parameter hS. The relations become even more evident if we
look at the same structure distortion along the 〈111〉 cubic
direction (figure 5). Figure 1 visualizes the periodic variation
of the structural chirality defined by equation (6) and related to
filling and emptying triangular prisms (compare to figure 5).
Note that the process is fully controlled by the structural
OP X−5 , and it has the same periodicity as the function η(u)
(see equation (5)). Keeping in mind the above remark on the
qualitative character of the definition equations (7)–(9), we
could use formally, for characterizing the crystal handedness,
the function h = sgn[η(u)] (figure 1) which is positive at
0 < u < 0.25, and negative for 0.25 < u < 0.50 (or −0.25 <
u < 0).

3. Magnetic helix and structural chirality

Theoretical works [16, 17] have shown that the fer-
romagnetic spiral in MeSi compounds is caused by a
Dzyaloshinskii–Moriya interaction which arises because of
the non-centrosymmetric arrangement of magnetic atoms
in the structure. The Dzyaloshinskii mechanism stabilizing
a long-period magnetic superstructure is caused by weak
‘relativistic’ spin–lattice or spin–spin interactions. It was
shown by Moriya that an invariant of the required form can
result from antisymmetric microscopic coupling between two
localized magnetic moments Si and Sj:

EDM
ij = Dij · [Si × Sj]. (10)

In the case of a long-period helical spin density wave the
Dzyaloshinskii energy term has the form D(S · ∇ × S).
Substituting into the latter a periodic function of the spin
wave yields that the ‘Dzyaloshinskii vector’ Dij is simply
its wave propagation vector k (see [16]). The expression of
equation (10) is, therefore, a characteristic parameter of the
magnetic chirality of the structure.

Let us underline the similarity in the symmetry properties
of two parameters, hS and EDM, both characterizing chiralities
of a different nature and which together should affect the
free energy of a B20 structure. Parameters hS (equations
(6)–(9)) and EDM (equation (10)) are both pseudoscalars—dot
products between an axial vector and a true vector. It is worth
noting a similar structure of the terms (7)–(8) and (10) too:
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Figure 5. Atomic shifts induced by the order parameter X−5 in the fcc lattice. The shifts u = 0.000, 0.250 and 0.500 correspond to zeros of
the function (5); for u = 0.125 the structure P4332 (4) breaks the group–subgroup relation with the parent Fm3̄m (1). The view is along the
〈111〉 cubic direction.

formally they are scalar projections of a certain density wave
on the direction of its propagation.

The evident consequence of the identical symmetry of the
chiral parameters is that any hypothetical process acting upon
the crystal and characterized by the pseudoscalar symmetry
should affect both the structural and the magnetic chiralities
at the same time.

The simultaneous variation of the chiralities (both
positive or negative, or of different signs) might be also
concluded from the free energy consideration. Indeed, either
of equations (6) and (10) is an antisymmetric counterpart
to symmetric dot products—second-degree terms in the free
non-equilibrium energy (Landau potential): the former to
a harmonic part of the displacive energy, the latter to the
symmetric Heisenberg exchange term in the magnetic energy
contribution. Equations (6) and (10) are not invariant in
the parent Fm3̄m phase, as they change their sign under
inversion; this implies a difference in free energies for two
enantiomers if the odd degree of these equations directly
contributes to the free energy. However, their bilinear product
(hS · EDM) is an invariant under inversion operation. The
bilinear coupling means strictly simultaneous change of the
coupled parameters; in our case it implies a simultaneous
change of the sign for both chiralities. However, if such a
change happens, symmetry considerations alone do not allow
us to define a driving force—only microscopic theory or
experiment can distinguish between primary and secondary
effects in the formation of a chiral state.

The other point worth noting is the fact that in terms
of the symmetry scheme developed in this paper, the
right-handed and left-handed enantiomeric modifications of
the B20 structure appear as two equal domains of the same

low-symmetry phase, corresponding to different signs of
the relevant OP. Indeed, the Landau potential with OP X−5
contains only even-degree terms (see the corresponding basis
of invariants in supplementary material available at stacks.iop.
org/JPhysCM/24/366005/mmedia). Thus, the change in the
sign of OP does not change the equilibrium energy of the
low-symmetry phase, and two distorted structures should be
identified as equivalent domains of the same structure.

4. Conclusion

In the paper we analyse the symmetry of metal silicides in
order to rationalize a link between structural and magnetic
chirality observed experimentally [6, 8, 9]. It is shown that
the symmetry of a single metal sublattice possesses periodic
changes as a function of displacement of the transition
metal atom along the main cubic diagonal. We parameterize
these changes in the framework of the phenomenological
scheme developed earlier for displacive reconstructive phase
transitions. The highest possible parent symmetry is achiral,
and its distortion towards chiral low-symmetry forms is
described by a corresponding order parameter. We show
that such a parameterization necessarily accounts for the
chirality, since the latter order parameter changes the sign
under inversion; the free energy for two structural domains
related by inversion is exactly the same.

For magnetic symmetry which is a subgroup of the
structural one, magnetic ordering cannot introduce inversion
or mirror operations absent in the crystal symmetry group.
Therefore magnetic ordering taking place in the chiral
sub-structure should also be chiral. Magnetic chiral structures
are also possible in achiral crystal structures if their
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magnetic subgroup does not contain second-order symmetry
elements, for such a scenario two domains of opposite
chirality should be formed having the same energy unless
an external perturbation shifts the equilibrium. This was
nicely demonstrated earlier for Ho, where equilibrium of two
magnetic domains of the opposite chirality can be shifted by
an external elastic deformation (torsion) [3].

If magnetic chirality originates not from symmetric but
from antisymmetric exchange interactions, the corresponding
chiral structure is stabilized by the Dzyaloshinskii–Moriya
interaction; this is the source of magnetic chirality in metal
silicides. Since the Dzyaloshinskii term is pseudoscalar it has
a different sign for two chiral domains related by inversion.
Such a difference in energy is not met in the scattering
experiments, where two domains are equally present. We
propose that the Dzyaloshinskii term contributes to free
energy as a bilinear product with the structural chirality;
both chiralities have to change sign at the same time under
inversion operation. This implies that magnetic chirality
is predefined by structural chirality; their ratio depends
on the corresponding coupling coefficient. However, the
sign of this latter cannot be predicted in the framework
of a general phenomenological approach, and therefore
one cannot conclude on the signs of two chiralities if
they have identical signs or opposite ones. This is a
typical problem for microscopic considerations; magnetic
chiral structures originating from the Dzyaloshinskii–Moriya
interaction have recently been analysed in [18]. The
microscopic nature of the phenomenological chiral link
between structure and magnetism remains to be revealed;
there is a correlation between structural and magnetic chirality
and magneto-transport properties first noted in [8]. This
correlation indicates that interaction of conduction electrons
with localized magnetic moments may play a certain role, at
least for metal silicides.

We conclude with a note on experimentation. It was
the experimental conclusions about chiral asymmetry in
MnSi that largely stimulated our experimental investi-
gations of structural and magnetic chiralities. Such an
asymmetry has been expected from the asymmetry of the
Dzyaloshinskii–Moriya interaction [19]. We have proved that
this asymmetry is not met in reality and both left and right
forms could be easily prepared [9]. These conclusions are
made possible by a combination of diffraction techniques

probing structural and magnetic chirality separately, namely
single crystal diffraction of synchrotron radiation and small
angle scattering of polarized neutrons. The set of experimental
probes could also be further complimented by x-ray magnetic
circular dichroism for synchrotron radiation and spherical
polarimetry for neutron scattering, that could elucidate
the microscopic nature of the chiral interplay between
crystallographic structure and magnetic ordering.
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