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Abstract Spin dynamics in FegsNigs Invar alloy has
been studied by left-right asymmetry of Small-Angle Po-
larized Neutron Scattering below T = 485K in exter-
nal magnetic fields H = 0.05 — 0.5T inclined relative to
the incident beam. The spin-wave stiffness D and the
damping I were obtained by fitting the antisymmetri-
cal contribution to scattering. The spin-wave stiffness
extrapolated by (T/T¢)?/? law to T = 0K is Dy =
117 + 2 meV-A? which is somewhat smaller than the
spin-wave stiffness obtained by triple-axis spectrometry,
whereas the spin-wave stiffness extracted from magneti-
zation measurements reads Dy = 80 meV-A2, An abnor-
mal behaviour of the spin-wave parameters for H > 0.2T
is marked.

1 Introduction

Spin-wave (SW) dynamics in Invar systems has been in-
tensively investigated in connection with the problem of
so called ’hidden excitations’ [1,2]. The idea of hidden ex-
citations stems from the observation that conventional
spin waves with the stiffness D(T') can not explain the
temperature variation of the magnetization M (T"). This
idea was checked in a series of inelastic neutron scatter-
ing experiments with and without polarization analysis
at a number of Invar and non Invar materials [3-7]. Vari-
ous explanations had been proposed for this discrepancy,
among them, e.g. was the coupling between the trans-
verse and longitudinal fluctuations. However, all of them
fail to close the problem, so far.

Usually, the spin excitations are studied by direct
measurements of the energy transfers in triple-axis spec-

trometry [1-7] sensitive to momentum transfers ¢ > 0.05A~".
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Here, a somewhat different technique has been applied
based on the analysis of the asymmetry of small-angle
polarized neutron scattering (SAPNS) with the sample
magnetized in the direction inclined relative to the in-
cident beam. The left-right asymmetry in magnetic in-
elastic SAPNS arises when the magnetization direction
of the sample is neither parallel nor transverse to the in-
cident neutron wavevector. Apart from tripple-axis spec-
trometry, this method [9-12] measures the integral over
energy transfers coming from the scattering on antisym-
metrical spin correlations. The SW parameters can be
extracted by comparison of the antisymmetrical contri-
bution to scattering with a model function. This tech-
nique has no restriction on the measured momentum
transfers and can be applied to study spin excitations
for k6 even less than 0.05A~1.

2 Experimental

Spin dynamics in Invar Fegs Nigs alloy has been studied
below T = 485K in magnetic fields of 0.05-0.5T. The
magnetization was measured with a SQUID magnetome-
ter and a Faraday balance for temperatures from 4K to
550K in an applied magnetic field of 0.42T. The obtained
result coincides with that of the previous studies [8].
Following the approach developed in [9-12] the mag-
netic scattering cross-section of polarized neutrons is
given by:
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where A,, is the magnetic scattering length of the atom,
F(q) is the magnetic form factor, Pg is the primary neu-
tron polarization, q = k' —k and w = E' — E are the mo-
mentum and energy transfers, respectively. At Py || m,
where m = M/M, the scattering function can be writ-
ten as: S = Sy + PyS,, where S; and S, are related to



symmetrical (K;) and antisymmetrical (K,) contribu-
tions for the spin projections transverse to m. At small
scattering angles § < 1 and ¢ < k,k:’, one can put
F(q) = 1 and the integral of the antisymmetrical part
of the cross-section in Eq.(1) over the energy transfer is
given by:

d_O' = 2P0A?n/dw(em)2Ka(qaw) ) (2)
anj.,
where e = q/q and

(em)? = 62 sin® ¢ + (5%) 0, sin 24 + (%)2cos2¢
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where ¢ is the angle between the applied magnetic field
and the incident momentum k, and 6, is the scattering
angle in k — H plane. As K,(q,w) is an odd function
of w for w <« T, the integral (2) is not equal to zero
only if ¢ # 0 or 90°. The integral reaches a maximum at
¢ = 45°. Moreover, it is antisymmetrical with respect to
the scattering angle component 6, in the m — k plane.
This makes it possible to determine the antisymmetrical
contribution by:

1

AL(0) = Z{ [1(p0, 9) — I(~ Py, 9)]

- {I(PO, —0) — I(— P, —0)] } . (4)

This fraction of measured intensities was fitted by Eq.(2)
with K, inferred in the framework of isotropic Heisen-
berg model and renormalized by dipolar forces [11,12]
and with collimation taken into account. As a result, a
set of SW parameters has been determined such as the
stiffness D, the damping factor Iy in SW damping ac-
cepted in the form I'; = Ie, which is in accord with the
results of the early experiments [1,2]. We put the Landé
factor in the Zeeman term g = 2.

The SAPNS experiments were carried out at the SANS-

2 scattering facility of FRG-1 research reactor in Gees-
thacht (Germany). A polarized beam of neutrons with
an initial polarization of Py, = 0.9, the neutron wave-
length A = 5.6A(AM/X = 0.1) and a divergence of 1.0
mrad was used. The scattered neutrons were detected by
a 128 x 128 position sensitive detector with an angular
range of £60mrad. The sample was magnetized parallel
to its long dimension by an electromagnet. The external
magnetic field was applied at an angle of ¢ = 45° with
respect, to the incident beam.

3 Results

Fig.1 shows the twice-antisymmetrical part (4) of scat-
tering in the k — H plane Al, as a function of the scat-
tering angle 6, for the magnetic fields H = 70 and 350
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Fig. 1 The antisymmetric part of SAPNS A, for magnetic
fields of H = 70 and 350 mT at T = 300 K.

mT at T = 300K. The solid line represents the the-
oretical model [11,12] calculated with the SW parame-
ters obtained from the fit. The scattering is concentrated
mostly within the cut-off angle 8¢ that depends on the
magnetic field as [13]: Oc(H)? = 63 — guH6y/E, and 6,
is inversely proportional to the SW stiffness D. In the
vicinity of the cut-off angle the scattering is smeared by
the SW damping 1.

Fig.2 shows the SW stiffness D and the damping fac-
tor Iy as functions of temperature for the magnetic field
H = 70mT. The SW stiffness obeys a (T'/Tc)>/? depen-
dence in the temperature range up to 0.97¢ with the
extrapolated value Dy = 117meV-A2 at T = 0K. This
value is by a factor of 0.82 lower than that obtained
by triple-axis spectrometry [1,2]. At the same time, the
quantity which would explain the variation of the mag-
netization measurements, is Dy = 80meV-A2. Thus, our
observation does not remove the problem of ’hidden ex-
citations’ for the Invar under study.

The SW damping factor shows a weak temperature
dependence at T' < 400K and then increases at 7' >
400K as the temperature approaches T¢. This behavior
of Iy is very similar to that of the thermal expansion
coefficient and therefore the growth of Iy with tempera-
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Fig. 2 The temperature dependence of (a) the spin-wave
stiffness D and (b) the spin wave damping [p.

ture can be related to the spin-lattice interaction in this
temperature range.

Fig.3 represents the magnetic field dependence of 6%,
(a) and the spin wave stiffness D (b). As seen from this
figure, the experimental data for 6% for H > 0.2T do
not obey the linear behavior while such behaviour is ob-
served for H < 0.2T in accordance to the prediction
of the theory for ordinary ferromagnets [13]. A similar
behavior of 6% (H) has been observed at all tempera-
tures measured. The SW stiffness obtained from the fit
is nearly constant for H < 0.2T and decreases linearly
with increasing the field for H > 0.2T. The damping fac-
tor I'p shows a similar behavior as the spin wave stiffness
does. However, such abnormal behavior for H > 0.2T is
observed neither in our magnetization measurements nor
in neutron scattering experiments elsewhere. We tend to
consider such behavior at H > 0.27 as that having non-
spin wave origin. At the moment, we are not ready to of-
fer areliable and comprehensive explanation for this phe-
nomenon, therefore, further investigations are needed.
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