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Abstract Spin dynamics in Fe65Ni35 Invar alloy has
been studied by left-right asymmetry of Small-Angle Po-
larized Neutron Scattering below TC = 485K in exter-
nal magnetic �elds H = 0:05� 0:5T inclined relative to
the incident beam. The spin-wave sti�ness D and the
damping � were obtained by �tting the antisymmetri-
cal contribution to scattering. The spin-wave sti�ness
extrapolated by (T=TC)

5=2 law to T = 0K is D0 =
117 � 2 meV��A2 which is somewhat smaller than the
spin-wave sti�ness obtained by triple-axis spectrometry,
whereas the spin-wave sti�ness extracted from magneti-
zation measurements reads D0 = 80meV��A2. An abnor-
mal behaviour of the spin-wave parameters forH > 0:2T
is marked.

1 Introduction

Spin-wave (SW) dynamics in Invar systems has been in-
tensively investigated in connection with the problem of
so called 'hidden excitations' [1,2]. The idea of hidden ex-
citations stems from the observation that conventional
spin waves with the sti�ness D(T ) can not explain the
temperature variation of the magnetization M(T ). This
idea was checked in a series of inelastic neutron scatter-
ing experiments with and without polarization analysis
at a number of Invar and non Invar materials [3-7]. Vari-
ous explanations had been proposed for this discrepancy,
among them, e.g. was the coupling between the trans-
verse and longitudinal 
uctuations. However, all of them
fail to close the problem, so far.

Usually, the spin excitations are studied by direct
measurements of the energy transfers in triple-axis spec-
trometry [1-7] sensitive to momentum transfers q > 0:05�A�1.
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Here, a somewhat di�erent technique has been applied
based on the analysis of the asymmetry of small-angle
polarized neutron scattering (SAPNS) with the sample
magnetized in the direction inclined relative to the in-
cident beam. The left-right asymmetry in magnetic in-
elastic SAPNS arises when the magnetization direction
of the sample is neither parallel nor transverse to the in-
cident neutron wavevector. Apart from tripple-axis spec-
trometry, this method [9{12] measures the integral over
energy transfers coming from the scattering on antisym-
metrical spin correlations. The SW parameters can be
extracted by comparison of the antisymmetrical contri-
bution to scattering with a model function. This tech-
nique has no restriction on the measured momentum
transfers and can be applied to study spin excitations
for k� even less than 0:05�A�1.

2 Experimental

Spin dynamics in Invar Fe65Ni35 alloy has been studied
below TC = 485K in magnetic �elds of 0.05{0.5T. The
magnetization was measured with a SQUID magnetome-
ter and a Faraday balance for temperatures from 4K to
550K in an applied magnetic �eld of 0.42T. The obtained
result coincides with that of the previous studies [8].

Following the approach developed in [9-12] the mag-
netic scattering cross-section of polarized neutrons is
given by:
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where Am is the magnetic scattering length of the atom,
F (q) is the magnetic form factor, P0 is the primary neu-
tron polarization, q = k
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mentum and energy transfers, respectively. At P0 k m,
where m = M=M , the scattering function can be writ-
ten as: S = St + P0Sa, where St and Sa are related to
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symmetrical (Kt) and antisymmetrical (Ka) contribu-
tions for the spin projections transverse to m. At small
scattering angles � � 1 and q � k; k

0

, one can put
F (q) = 1 and the integral of the antisymmetrical part
of the cross-section in Eq.(1) over the energy transfer is
given by:
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where � is the angle between the applied magnetic �eld
and the incident momentum k, and �x is the scattering
angle in k � H plane. As Ka(q; !) is an odd function
of ! for ! � T , the integral (2) is not equal to zero
only if � 6= 0 or 90Æ. The integral reaches a maximum at
� = 45Æ. Moreover, it is antisymmetrical with respect to
the scattering angle component �x in the m� k plane.
This makes it possible to determine the antisymmetrical
contribution by:
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This fraction of measured intensities was �tted by Eq.(2)
with Ka inferred in the framework of isotropic Heisen-
berg model and renormalized by dipolar forces [11,12]
and with collimation taken into account. As a result, a
set of SW parameters has been determined such as the
sti�ness D, the damping factor �0 in SW damping ac-
cepted in the form �q = �0�q which is in accord with the
results of the early experiments [1,2]. We put the Land�e
factor in the Zeeman term g = 2.

The SAPNS experiments were carried out at the SANS-
2 scattering facility of FRG-1 research reactor in Gees-
thacht (Germany). A polarized beam of neutrons with
an initial polarization of P0 = 0:9, the neutron wave-
length � = 5:6�A(��=� = 0:1) and a divergence of 1.0
mrad was used. The scattered neutrons were detected by
a 128� 128 position sensitive detector with an angular
range of �60mrad. The sample was magnetized parallel
to its long dimension by an electromagnet. The external
magnetic �eld was applied at an angle of � = 45Æ with
respect to the incident beam.

3 Results

Fig.1 shows the twice-antisymmetrical part (4) of scat-
tering in the k�H plane �Ia as a function of the scat-
tering angle �x for the magnetic �elds H = 70 and 350
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Fig. 1 The antisymmetric part of SAPNS �Ia for magnetic

�elds of H = 70 and 350 mT at T = 300K.

mT at T = 300K. The solid line represents the the-
oretical model [11,12] calculated with the SW parame-
ters obtained from the �t. The scattering is concentrated
mostly within the cut-o� angle �C that depends on the
magnetic �eld as [13]: �C(H)2 = �2

0
� g�H�0=E, and �0

is inversely proportional to the SW sti�ness D. In the
vicinity of the cut-o� angle the scattering is smeared by
the SW damping �q .

Fig.2 shows the SW sti�ness D and the damping fac-
tor �0 as functions of temperature for the magnetic �eld
H = 70mT. The SW sti�ness obeys a (T=TC)

5=2 depen-
dence in the temperature range up to 0:9TC with the
extrapolated value D0 = 117meV��A2 at T = 0K. This
value is by a factor of 0.82 lower than that obtained
by triple-axis spectrometry [1,2]. At the same time, the
quantity which would explain the variation of the mag-
netization measurements, is D0 = 80meV��A2. Thus, our
observation does not remove the problem of 'hidden ex-
citations' for the Invar under study.

The SW damping factor shows a weak temperature
dependence at T < 400K and then increases at T >

400K as the temperature approaches TC . This behavior
of �0 is very similar to that of the thermal expansion
coeÆcient and therefore the growth of �0 with tempera-
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Fig. 2 The temperature dependence of (a) the spin-wave

sti�ness D and (b) the spin wave damping �0.

ture can be related to the spin-lattice interaction in this
temperature range.

Fig.3 represents the magnetic �eld dependence of �2
C

(a) and the spin wave sti�ness D (b). As seen from this
�gure, the experimental data for �2C for H > 0:2T do
not obey the linear behavior while such behaviour is ob-
served for H < 0:2T in accordance to the prediction
of the theory for ordinary ferromagnets [13]. A similar
behavior of �2

C
(H) has been observed at all tempera-

tures measured. The SW sti�ness obtained from the �t
is nearly constant for H < 0:2T and decreases linearly
with increasing the �eld for H > 0:2T. The damping fac-
tor �0 shows a similar behavior as the spin wave sti�ness
does. However, such abnormal behavior for H > 0:2T is
observed neither in our magnetization measurements nor
in neutron scattering experiments elsewhere. We tend to
consider such behavior at H > 0:2T as that having non-
spin wave origin. At the moment, we are not ready to of-
fer a reliable and comprehensive explanation for this phe-
nomenon, therefore, further investigations are needed.
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