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Abstract. We report structural changes in amorphous hydrated zirconia caused by high
intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and
X-ray diffraction (XRD). It was established that sonication affects the mesostructure of
ZrO,xxH,0 gels (i.e. decreases their homogeneity, increases surface fractal dimension and the
size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs
its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase
transition.

1. Introduction

Recently considerable progress was achieved in the field of application of high intensity ultrasonic
treatment to nanomaterials synthesis. In the last few years a number of papers and reviews devoted to
the development of advanced sonochemical methods of nanopowders and nanocomposites preparation
were published [1].

Specific physical and chemical effects taking place during sonication of liquids arise mostly from
acoustic cavitation, i.e. formation of vapour-gas microbubbles and their further oscillations and
collapse. The mechanism of sonochemical processes in homogeneous liquids is well studied and thus
obtained data are usually treated in the frames of two major theories, namely, hot spot theory [2] and
the theory of local electrization [3]. The former supposes that high local temperatures (up to several
thousand degrees) and pressures (several kilobars) arise during the collapse of cavitation bubbles. The
latter explains the mechanism of sonochemical reactions through high local electric potentials formed
on the surface of microcavities leading to intensive electrical discharges. In both cases extreme
conditions in the cavities lead to decomposition of volatile compounds dissolved in the liquid (for
instance, organometallic compounds, metal complexes etc.) and formation of nanostructured products.

On the contrary, information on the specific action of high intensity ultrasound on heterogeneous
liquid-solid systems is still rather poor. It is generally accepted that the collapse of cavitation bubbles
in the vicinity of the phase boundary (e.g. solid-liquid interface) occurs asymmetrically and subject it
to shockwaves and local microjets of liquid. Thus, acoustic treatment of suspensions consisting of
relatively large crystalline particles, which size is comparable to the size of a collapsing cavitation
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bubble (d > 0.5—1 um) leads to several specific effects including de-agglomeration, decrease of mean
particle size, increase of the surface area due to erosion, etc. [1]. In turn, investigations concerning the
influence of sonication on heterogeneous systems (for instance, sols and gels) consisting of
substantially smaller particles were performed on a quite limited number of systems, mostly silica
xerogels [4]. It was established that ultrasonication leads to the increase of the rate of gel formation
and changes the mesostructure (e.g. density, size of monomers and size of aggregates) of gels.
Nevertheless the effects of ultrasonication on such systems are to be further ascertained. For instance,
recently we have established that ultrasonication affects the fractal structure of amorphous iron(II)
oxide and governs its crystallization behaviour under hydrothermal conditions [5].

In view of this circumstance the present work aims to analyze the influence of high intensity
ultrasound on the mesostructure and fractal structure of amorphous hydrated zirconia xerogels. Our
investigation was primarily based on the use of small-angle neutron scattering method (SANS) which
is widely used in the study of nuclear and magnetic inhomogeneities in various amorphous
materials [6]. Structural changes in ZrO, caused by ultrasonication were also corroborated by means of
X-ray diffraction (XRD) and low-temperature nitrogen adsorption. This paper continues the series of
our research reports connected with studies of mesostructure and fractal properties of amorphous
hydrated oxides. Experimental results reported in this paper not only comply with our previous
findings on the ultrasonic-assisted synthesis of oxide materials, but also significantly expand our
understanding of the principles of evolution of amorphous hydrated oxides in course of crystallization.

2. Experimental

2.1. Synthesis of samples

Hydrated zirconia gels were precipitated from zirconium oxynitrate (99%, Aldrich) solutions as
follows: 50 ml of zirconium oxynitrate aqueous solution (Cy = 0.10, 0.25 or 1.00 mole-L") were added
dropwise to 50 ml of ammonia aqueous solution (7.5 mole-L") under vigorous stirring. The total
duration of the precipitation procedure was 15 min. Gels of hydrated zirconia were also precipitated
under the same conditions but under ultrasonic treatment performed using Bandelin Sonopuls HD
3200 generator operated at 20 kHz and equipped with titanium horn (TT-13 titanium tip). The output
power measured using standard calorimetric technique was 59 W-cm™. During precipitation procedure
ultrasonic horn was immersed 10 mm below the surface of the treated media. To prevent
uncontrollable rise of the temperature due to dissipation of acoustic energy the precipitation process
was conducted in the thermostated cell (25°C).

Upon completion of the sedimentation procedure the suspensions were additionally stirred for
30 min with (for sonicated samples) or without (for control ones) ultrasonic treatment. As synthesized
hydrated zirconia gels were centrifuged (8000 min™) and washed several times with distilled water
until the conductivity of mother liquor as measured using Hanna HI 98312 conductometer was less
than 0.3 mS. Gels were further dried in air at 60°C overnight to produce hydrated zirconia xerogels.
Throughout the paper hydrated zirconia xerogels synthesized from 0.10, 0.25 and 1.00 mole-L"
solutions under ultrasonic treatment (US) and without sonication (C) are named Z-1US, Z-2US,
Z-3US, Z-1C, Z-2C and Z-3C, respectively.

Thermal decomposition of the xerogels was conducted in a muffle furnace in air at 500 and 600 °C
for 5 h. Heating rate was 10 °C/min. After the annealing samples were cooled down to ambient
temperature within the furnace. Resulting zirconia powders are named hereafter X—T (here, X is a
designation of the initial xerogel, and T is the temperature of treatment — 500 or 600 °C).

2.2. Methods of analysis

SANS measurements were performed on SANS-2 setup (FRG-1 neutron reactor, GKSS Research
Centre, Geesthacht, Germany). The experiments were performed at neutron wavelength 4 = 0.58 nm
with AA/A = 10% and for four sample-detector distances SD = 1, 3, 7 and 20.7 m, which allowed to
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perform the measurements of the neutron scattering intensity for momentum transfers in the range
2.6:10% < ¢ < 2.6 nm™. The scattered neutrons were detected by a two-dimensional position-sensitive
3He detector (256x256 cells, x slope/ y slope — 2.2mm/ 2.2mm).

Samples of the xerogels were placed in a 1 mm thick quartz cells. Apparent density py of each
sample was calculated as a weight of a powder divided by its volume. The initial spectra for each ¢
range were corrected using the standard procedure [7] taking into account the scattering from the setup
equipment and cell, as well as background from incoherent scattering of neutrons on hydrogen atoms
which are present in samples in the form of physically and chemically bounded water. Resulting 2D
isotropic spectra were averaged azimuthally and their absolute values were determined by normalizing
to the incoherent scattering cross section from vanadium with inclusion of the detector efficiency and
apparent density (py) for each sample. All measurements were done at room temperature.

The SANS intensity analyzed hereafter was defined as

1(q)=1(q)-T-1,(q) (1)

where /(q) and Iy(q) are the momentum-transfer distributions of scattered neutrons behind the sample
and beam without the sample, respectively; and 7 is the reduction of the transmitted beam, i.e., the
transmission coefficient.

The measured value of the SANS intensity, /(q), is related to the scattering law S(g) through the
following expression:

1(q)=1-L-[Flg—q,)S(q)dq, )

where L is the sample thickness and F(g) — setup resolution function, which was approximated by a
Gaussian and was calculated separately for each SD distance with the use of the standard
procedure [8].

In addition to SANS, information on the structure of gels was obtained from the value of
transmission coefficient 7' = 1(0)/],. It is known [9] that intensities /(0) and /; are related as

](O):]O -exp(— Zlot L) 3)

where X = o; + g, is the integral scattering cross section which includes nuclear scattering oy and
absorption a;.

Thermogravimetric and differential thermal analyses (TGA/DTA) of the xerogels were performed
in air using Pyris Diamond thermoanalyzer (Perkin-Elmer) in the temperature range 20-800 °C
(heating rate 10 °C/min).

X-ray powder diffraction (XRD) patterns were obtained using Rigaku D/MAX 2500 diffractometer
(CuK, radiation) over a 20 range of 10—85 ° with an increment 0.02 °/step at the rate 2 °/min. Particle
size was estimated using Scherrer equation

KA
[8(20)-s]cos 6, ‘ )

Here, 6, is the peak position, A is the radiation wavelength, A26) — FWHM of a corresponding
peak, s — instrumental broadening (is equal to 0.1 £ 0.01 °260). The value of K (shape factor) was set
equal to 1. The f26) values were determined by subtraction of background followed by fitting
profiles of (111) and (111) reflections of monoclinic zirconia and (111) reflection of tetragonal
zirconia to the Voigt pseudo-functions.

Volume fractions of monoclinic (m-ZrO,) and tetragonal (-ZrO,) phases in zirconia samples were
estimated using equations proposed by Toraya et al. [10].

Specific surface area (Sggr) of samples was measured by low temperature nitrogen adsorption
conducted using ATX-6 analyzer (Katakon, Russia). Before measurements the samples were outgased
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at 200 °C for 30 min under dry helium flow. Calculation of specific surface area was carried out
within 8-point Brunauer-Emmett-Teller (BET) method.

3. Results and discussion

X-ray diffraction analysis has confirmed that all the initial xerogels are of amorphous nature giving
two extremely broad diffraction peaks at ~30 and ~50—60 °26 (see figure 1). Such X-ray patterns are
quite common for as precipitated hydrous zirconia and according to [11] arise from short-range
ordering in zirconium hydroxide polymers.

Thermal analysis of the xerogels has shown that their decomposition occurs in an identical way.
Namely, overall weight loss is equal to 77-80 mass.% regardless of application of ultrasound during
precipitation process and regardless of concentration of zirconium oxynitrate in the starting solutions.
Typical thermal analysis data are presented in figure 1.

Here, weight loss at temperatures up to approximately 400 °C corresponds to elimination of
physisorbed and chemically bounded water, which is accompanied by broad endothermic effect. Sharp
exothermic peak at ~450 °C is obviously due to formation of nanocrystalline zirconia. These data are
in line with our previous results. It has been shown [12] that hydrated zirconia synthesized in acidic
media (when pH is lower than the point of zero charge) contains high amount of adsorbed NO;™ ions.
Thermal treatment of resulting xerogels is accompanied not only by elimination of physically and
chemically bounded water, but also by a significant weight loss at # > 400 °C caused by decomposition
of nitrates. On the other hand, hydrated zirconia precipitated under alkaline conditions, as it was done
in this work, contains only trace amount of such impurities.
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Figure 1. XRD (a) and TGA and DTA (b) data for Z-2US hydrated zirconia xerogel.

Thus basing on TGA data we can conclude that chemical composition of all the xerogels can be
approximately ascribed as ZrO,-1.7H,O and it is almost identical regardless of synthetic procedure.
This fact gives us an additional basis for the validity of SANS data comparison.

Figure 2 shows the experimental curves of differential neutron cross section d2{g)/d€2 vs.
momentum transfer ¢ for amorphous zirconia xerogels precipitated under various conditions.
Comparison of these spectra gives an evidence that in all the cases increase in the concentration of
starting zirconium oxynitrate solution results in an increase in the SANS intensity, indicating a
decrease in the nuclear density homogeneity of corresponding xerogels in the range of 1-100 nm. One
can also see that in the case of control samples dependence of SANS intensity upon the concentration
of starting solution is much more pronounced than in case of ultrasonicated gels.

This effect is even more pronounced when the integral SANS cross-sections are compared
(figure 3). Integral cross sections for the samples prepared from concentrated solutions (0.25 and
1.00 mole-L™") with or without ultrasonication are nearly identical indicating that the difference in their
nuclear homogeneity is negligible. On the other hand, hydrated zirconia precipitated from diluted
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oxynitrate solution (0.10 mole-L™") under ultrasonic action possesses lower nuclear homogeneity in
comparison with the corresponding control sample.
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Figure 2. SANS differential cross-sections d2{q)/d¢2 for amorphous ZrO,xH,O =xerogels vs.
momentum transfer ¢. Designations of corresponding samples are given in the pictures. Fitting of
experimental data with formula (6 and 9) is given with firm lines.
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Figure 3. Integral SANS cross-sections 2
for amorphous ZrO,xH,O xerogels vs.
concentration  of  starting  zirconium
oxynitrate solution (1 — control samples; 2 —
sonicated ones).

dimension, 2 < Dg< 3,

Figure 3 also demonstrates that in the control
series of the gels increase in the concentration of
starting solutions results in notable decrease in
nuclear homogeneity. Application of ultrasound
diminishes this effect so that nuclear homogeneity of
samples synthesized from different starting solutions
is practically identical.

In SANS experiments, the power-law momentum-
transfer dependence of the scattering intensity is
usually observed in the form I(¢)~¢™" (n < 6) in a
certain momentum-transfer region g > 1/R, where R is
the characteristic scale of the scattering system. The
fractal dimension of the system and the correlation
function of scattering inhomogeneities are determined
by the n value or, more precisely, by the deviation
from the Porod asymptotic (n = 4). For volume and
mass fractals, n coincides with the fractal dimension
Dy, 1<Dy < 3. For the scattering from three-
dimensional  objects  with  fractal  surfaces
3<n=6-Ds< 4, where Dg is the surface fractal

It should be emphasized that a common property for all the samples under study is that
corresponding spectra can be divided into two various ¢ ranges, where the behaviour of the SANS
cross section d2{g)/d(2 is significantly different (see figure 2). In particular, for low ¢ values (¢ < ¢,
where ¢, ~ 0.15 nm™ is the transition point between one scattering regime to another) the scattering
cross section for all the samples satisfies the power law ¢ . As known, such a power-law dependence
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is observed for wide size distribution of scattering inhomogeneities with the relation R.x >> R, if the
condition

R\ <<q<<R.. (5)

is satisfied. In addition, the power scattering law
means that inhomogeneities making the dominant
contribution to scattering are sufficiently large, so
that ginR >> 1. Bale and Schmidt [13] proposed a

more exact applied criterion for a certain
i characteristic size of inhomogeneities, guinR ~ 3.5.
22 ] In our case, Gmn = 2.6:10° nm' and the
Q characteristic size of inhomogeneities is equal to
2,13 i R~ 135 nm.

The exponent n values found from the slope of
the straight-line parts of the curves plotted in log-
e log scale (see figure 2) lie in the range from 3.67 to
" on ' R 3.99 (see table 1). This corresponds to the scattering

. Cymolel” from the fractal surfaces with the dimension
Figure 4. Surface fractal dimension (Ds) of 2.01 <Dg=6—n <2.33 (figure 4)

amorphous  zirconia  xerogels  versus
concentration of initial solution (1 — control
samples; 2 — sonicated ones).
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Thus, the further analysis of scattering in the
region g < ¢, has been performed using the two-
phase model (solid phase—pore) of the porous
structure with the fractal surface of the phase
interface [14]. According to this model, an object consists of inhomogeneities possessing strongly
developed surface, so that, if the total area of the inhomogeneity surface measured in the scale of the
inhomogeneity surface size R is proportional to R, the area of the surface of the scale r << R is equal
to RZ(R/r)A, where 0 < A <1 and n = 4 — A. In this case, the fractal dimension of the surface,
Ds =2+ A, is larger than two.

Table 1. Parameters of mesostructure of amorphous hydrated zirconia samples according to SANS
measurements.

Sample Z-1C Z-1US Z-2C Z-2US Z-3C Z-3US
designation

D, g-CM > 1.485 1.68 1.62 1.794 1.58 1.78

T 0.73 £0.01 0.66 £0.01 0.67 £0.01 0.62 £0.01 0.64 £0.01 0.63 £0.01
Ziop, CM 124 £0.6 15.1£0.7 15.1£0.6 16.3£0.8 17.2£0.6 15.8£0.6
A, x10°, cm2.g!  1.22+0.07 5.77+0.21 2.42£0.20 5.53+£0.33 4.83 £0.57 3.57+£0.34
Ds=6-n 2.01 £0.02 2.07£0.02 2.10£0.03 2.06 £0.03 2.33£0.04 2.27£0.04
A,, cm*-g! 0.95+0.01 1.02 £ 0.01 3.20£0.08 1.91£0.11 - -

Fg, NM 1.41 £0.03 1.42 +£0.03 4.62 £0.05 4.68 £ 0.04 - -
Dy=m - - - - 1.80 £ 0.05 1.45£0.05

Deviation from the power law ¢ is observed for all the samples (sonicated and non-sonicated) at
higher values of momentum transfer. For the samples prepared from 0.10 and 0.25 mole-L" zirconium
oxynitrate solutions (with or without ultrasonication), in the region g > ¢., the scattering curves exhibit
a so-called “shoulder” indicating the presence of small inhomogeneities with characteristic size 7.. In
this region the function d2{q)/d(2 exhibits Guinier behaviour. Thus, the observed scattering pattern
indicates that the Z-1US, Z-2US, Z-1C and Z-2C xerogels contain two types of scattering
inhomogeneities with strongly different characteristic scales which correspond to relatively large
aggregates with the strongly developed surface that are formed from the initial small monomer
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particles. Analysis of the curve’s slopes in Guinier region (In(d2{(g)/d€2) versus ¢°) allows one to
evaluate the values of the gyration radii r, of small inhomogeneities as well as their characteristic size
r.. For instance, characteristic size of spheres can be calculated as r. = v/5/3 r, [15]

The power-law dependence of the scattering cross section d2(g)/d<2 is usually observed for large ¢
values, whereas the Guinier regime from which an upper estimate can be obtained for the scale of
scattering inhomogeneities is observed for small g values. The absence of the Guinier region on the
scattering curves for low ¢ values means that the gyration radius R, or, for the fractal systems, the
upper self-similarity boundary is larger than the maximum size R,.,x of the inhomogeneities scattering
from which can be detected in the experiment with a given resolution. In turn, the lower self-similarity
boundary is likely determined by the size 7. of the small inhomogeneities.

In turn, SANS cross section for Z-3US and Z-3C samples prepared from concentrated solutions
with or without ultrasonication, in the region g > ¢. obeys ¢ " law, where the exponent m values are
1.45 and 1.8, respectively. This corresponds to the scattering from the volume fractals with the
dimension Dy = m = 1.45 and 1.8, respectively [14]. Results obtained indicate that synthesis of
xerogels from concentrated solutions lead to formation of volume fractal clusters consisting of primary
particles. These clusters, in turn, form large-scale aggregates possessing well-developed fractal
surface.

In general, we can conclude that scattering from hydrous zirconia samples under this study is in a
good accordance with our previously reported data [12] indicating that scattering on amorphous
zirconia xerogels precipitated at pH > 6 can be described within the model of porous structure with
fractal surface.

In view of this circumstance, we used the following expression to analyze scattering from Z-1US,
Z-2US, Z-1C and Z-2C xerogels over the entire ¢ range [12]:

dZ(q) _ AI(DS)

dQ q

2}/'2
+ 4, ‘exp[—ng +1,,. (6)

Here, 4,(Ds) and 4, are the free parameters first of which depends on the system fractal dimension
[13] and the second is proportional to the product of the number of monodisperse inhomogeneities in
the scattering volume and the neutron scattering amplitude density p [15]. The parameter [, is a
constant that is independent of ¢ and is associated with incoherent scattering on hydrogen atoms in
xerogels.

It is well known that for porous materials consisting of two homogeneous phases 4, is related to
the phase-interface surface as [13]:

4,(Dg)=p’T(5 - Dy )sin[(D —1)(z/2)IN, , (7)

where N, is the characteristic of the fractal boundary, I' is the gamma function, p, is the solid-phase
density, and p for a molecule containing several elements is defined as:

o,N,
= E bN, ——=. 8
P Ny (®)

Here, N, is the Avogadro constant, M is the molar mass, b; is the scattering length for the i-th
element in the molecule, and »; is the number of atoms of this element. The constant N, in Eq. (7) is
related to the specific surface (Sy) of the surface fractal as Sy = Ny +*™*, where ** is determined by the
length of the yardstick. For smooth surfaces, Ds =2 and N, = S.

Taking into account that for the Z-3C and Z-3US xerogels the crossover from one power-law
dependence to another occurs at ¢. ~ 0.15 nm™' we used the following expression to analyze scattering

from these samples:
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dZ(Q):A1(DS)+A3(DV)+]A 9)
dQ qn qm inc *

To obtain the final results, expressions (Eq. (6) and (9)) were convolved with the setup resolution
function. The experimental curves of the differential cross section d2{g)/d2 versus ¢ were processed
by the least mean squares method over the entire ¢ range under investigation. The results of this
analysis are given in figures 2 and 4 and in Table 1.

To analyze quantitatively the influence of ultrasonic treatment on the structure of amorphous
xerogels we have compared the scattering from sonicated and non-sonicated samples. The results of
such a comparison are presented in figure 5 as a difference in scattering as follows:

dX (Q) _ dXys (Q) _ dzc(q) (10)
dQ dQ aQ
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Figure 5. Differences between SANS data for sonicated and non-sonicated samples. 1, 2 and 3 —

differential curves for samples obtained from 0.10, 0.25 and 1.00 mole-L! solutions, respectively.

This difference is positive over the entire g range for the xerogels prepared from 0.10 and
0.25 mole-L™" solutions. This indicates that sonication results in formation of less homogeneous
xerogels. For the xerogel prepared from concentrated solution (1.00 mole-L™) the opposite pattern is
observed. In this case, the difference in scattering between sonicated and non-sonicated samples is
positive at low and high g range only. These results are in a good agreement with the values of the
integral cross-sections % presented in figure 3.

Data presented in figure 4 demonstrate that surface fractal dimension of hydrated zirconia xerogels
also depends upon both concentration of starting zirconium oxynitrate solution and conditions of
synthesis (application of ultrasound). One can see that in general increase in concentration results in
increase of surface fractal dimension. The same effect has been also observed previously for
amorphous iron(IIl) hydroxide [5]. Probably xerogels synthesized from concentrated solutions possess
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higher surface fractal dimension due to the higher frequency of colloid particles collisions during
precipitation that leads to formation of more ramified structures.

Effect of ultrasonication on the surface fractal dimension of xerogels synthesized from 0.25 and
1.00 mole-L™" solutions is negligible. On the other hand, application of ultrasound results in notable
growth of Ds in xerogels obtained from 0.10 mole-L™' solution. We believe that such an effect also
originates from higher frequency of colloid particles collisions in ultrasonic field caused by microjets
of liquid being formed during the collapse of cavitation bubbles.

According to XRD data thermolysis of hydrated zirconia affects phase composition and even
particle size of crystalline ZrO, obtained through thermal treatment. Thermolysis of initial xerogels at
500 °C results in formation of tetragonal zirconia with no traces of amorphous phase or
thermodynamically stable monoclinic ZrO,. Upon the rise of the temperature up to 600 °C phase
transition partially occurs and monoclinic ZrO, is formed. Figure 6 presents examples of X-ray
diffraction patterns and the dependence of the volume fraction of tetragonal zirconia from the
concentration of initial zirconium oxynitrate solution.
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Figure 6. X-ray diffraction patterns of zirconia samples Z-1C-600 and Z-1US-600 (left) and volume
fraction of tetragonal zirconia vs. concentration of initial solution (right). 1 — control samples; 2 —
sonicated ones.

One can see that the application of ultrasound during synthesis of hydrated zirconia results in
notable changes in phase composition of resulting nanocrystalline ZrO,. Volume fraction of
metastable tetragonal zirconia is higher for the samples obtained under sonication over all the
concentration range.

X-ray diffraction data also demonstrate that ultrasound does not significantly affect particle size of
tetragonal zirconia (see figure 7): in all the cases corresponding differences lay within the
experimental error. On the other hand, increase in the concentration of starting solutions leads to a
certain growth of #-ZrO, particle size. This effect is probably due to higher density of hydrated
zirconia formed from concentrated solutions in comparison with diluted ones. Sonication of the initial
gels results in slight growth of monoclinic zirconia particle size while increase in concentration of
starting solution does not affect it.

Specific surface area data (see figure 7) is in a good accordance with #-ZrO, particle size
determined from X-ray diffraction. Estimation of particle size from low-temperature nitrogen
adsorption data for samples obtained from 0.10, 0.25 and 1.00 mole-L™ solutions and heated at 500 °C
results in the values of 15, 17 and 19-23 nm, respectively. On the other hand, one can see that thermal
treatment at higher temperature (600 °C) results in notable decrease of specific surface area (Sggr)
while particle size of #-ZrO, does not change significantly. This effect can not be referred to m-ZrO, as
its particle size as estimated by Scherrer equation lies within the range of 13—17 nm for all the
samples. Thus we can conclude that thermal treatment at 600 °C results in agglomeration of individual
particles while this temperature is not high enough for coarsening and growth of nanocrystalline



5th European Conference on Neutron Scattering IOP Publishing

Journal of Physics: Conference Series 340 (2012) 012057 doi:10.1088/1742-6596/340/1/012057

zirconia. On the other hand these data do not confirm the supposition described elsewhere [16] dealing
with stabilization of tetragonal zirconia for sub-30 nm particles of ZrO,.

254

204

d, nm

T, -

30 34—

— &l
T
1

C_, mole L .
o C,. mole L’

Figure 7. Particle size (left) and specific surface area (right) of tetragonal zirconia in samples heated at
500 °C (1, 2) and 600 °C (3, 4). 1,3 — control samples; 2, 4 — sonicated ones.
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