

XAFS и XMCD методики в исследовании влияния катионного замещения на структурные и магнитные свойства оксиборатов на основе $Co_{3-x}Me_xBO_5$

<u>М.С. Платунов</u>¹, С.Г. Овчинников^{1,2}, В.Н. Заблуда¹, Н.Б. Иванова^{1,2}, Н.В. Казак¹, Ю.В. Князев², А. Rogalev³, F. Wilhelm³, E. Weschke⁴, E. Schierle⁴, Я.В. Зубавичус⁵

- ¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия
- ² Сибирский федеральный университет, Красноярск, Россия
- ³ European Synchrotron Radiation Facility, Grenoble, France
- ⁴ Helmholtz-Zentrum Berlin Bessy II, Berlin, Germany
- ⁵ НИЦ «Курчатовский институт», Москва, Россия

Федеральное государственное бюджетное учреждение науки Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук

Актуальность исследования Объекты для фундаментальных исследований

- 1. Структурные и магнитные переходы;
- 2. Зарядовое упорядочение [Fe_2BO_4 , Fe_3BO_5];
- 3. Электронные переходы $[FeBO_3, VBO_3, GdFe_3(BO_3)_4]$ и спиновый кроссовер $[FeBO_3]$ под давлением;

- 4. Оптическая прозрачность [FeBO₃, ReFe₃(BO₃)₄, Co₂B₂O₅];
- 5. Низкоразмерные элементы в кристаллической структуре;
- 6. Сильные электронные корреляции

T = 300K

T. Kawano et al. J. Solid State sciences (2010)

Выбор объекта исследования

 $(M^{2+})_2(M^{3+})BO_5$ (ludwigite) M^{2+} = Mg, Mn, Fe, Co, Ni, Cu, Zn...; $M^{3+} = Ti, V, Cr, Fe, Co, Ga...$

- низкоразмерные подструктуры (цепочки, зигзаговые стенки, ленты) кристаллическая группа людвигитов - Pbam 4 неэквивалентные позиции
- сложное магнитное поведение: каскад магнитных переходов, дальний магнитный порядок, спиновое стекло, магнитная анизотропия

Разнообразные структурные элементы (a), пироборатов **(б)** котоитов людвигитов (с).

И

Выбор объекта исследования

Fe₃BO₅

 Co_3BO_5

Φ ерримагнетик $T_N = 43 \text{ K}$

T (K) D. C. Freitas et al. PRB (2008)

Выбор объекта исследования

D. C. Freitas et al. PRB (2010)

Применяемые методики

- 1. **Метод спонтанной кристаллизации из раствора-расплава** Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- 3. Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle BESSY II совместно с A. Rogalev и F. Wilhelm ESRF

ILHMFLТ Польша

НИЦ «Курчатовский институт», станция СТМ Москва

Образцы	Система раствор-расплава
Co ₃ BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$ = 3:2:4:3:3
Co _{3-x} Fe _x BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$: $Fe_2O_3 = 3: 2: 4: 3: 2: 1$

Германия

Применяемые методики

- 1. **Метод спонтанной кристаллизации из раствора-расплава** Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle BESSY II совместно с A. Rogalev и F. Wilhelm ESRF

ILHMFLТ Польша

НИЦ «Курчатовский институт», станция СТМ Москва

Образцы	Система раствор-расплава				
Co ₃ BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3 = 3: 2: 4: 3: 3$				
Co _{3-x} Fe _x BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$: $Fe_2O_3 = 3: 2: 4: 3: 2: 1$				

Применяемые методики

- 1. Метод спонтанной кристаллизации из раствора-расплава Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle - BESSY II совместно с A. Rogalev и F. Wilhelm - ESRF

ILHMFLТ Польша

НИЦ «Курчатовский институт», станция СТМ Москва

Образцы	Система раствор-расплава
Co ₃ BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$ = 3:2:4:3:3
Co _{3-x} Fe _x BO ₅	$Bi_2Mo_3O_{12}: B_2O_3: CoO: Na_2Co_3: Co_2O_3$: $Fe_2O_3 = 3: 2: 4: 3: 2: 1$

Германия

Получение кристаллов и структурные исследования

	r(M ²⁺)	r(M ³⁺)	a, (Å)	b, (Å)	c, (Å)	V, (ų)
(Co ²⁺) ₂ (Co ³⁺)BO ₅	0.745	0.610	9.2800(9)	11.9278(11)	2.9660(3)	328.31
(Co ²⁺) ₂ Fe ³⁺ BO ₅	0.745	0.645	9.3818(16)	12.344(2)	3.0578(5)	354.13
$(Co^{2+})_2(Co^{3+})_{0.4}(Ga^{3+})_{0.6}BO_5$	0.745	0.620	9.2962(5)	12.1929(6)	3.0275(2)	343.16
Co ²⁺ Mg ²⁺ Ga ³⁺ BO ₅	0.745, 0.720	0.620	9.288(3)	12.263(4)	3.033(1)	345.46
(Fe ²⁺) ₂ (Fe ³⁺)BO ₅	0.780	0.645	9.463(1)	12.305(1)	3.0727(6)	357.79

	M1	M2	M3	M4	ref.
Co ₃ BO ₅	Co ²⁺	Co ²⁺	Co ²⁺	Co ³⁺	PRB 77, 184422 (2008)
Co ₂ FeBO ₅	0.25 Co ²⁺	0.16 Co ²⁺ 0.09 Fe³⁺	0.5 <i>C</i> o ²⁺	0.10 Co ²⁺ 0.40 Fe³⁺	*
Co _{2.4} Ga _{0.6} BO ₅	0,25Co ²⁺	0,21 Co ²⁺ 0.04 Ga³⁺	0.5 <i>C</i> o²+	0.23 Co ²⁺ 0.27 Ga³⁺	*
Ni ₂ FeBO ₅	0.25 Ni ²⁺	0.25 Ni ²⁺	0.5 Ni ²⁺	0.5 Fe ³⁺	PRB 79, 134437 (2009)

N.B. Ivanova et al. Low Temp. Phys. 38 (2012)

Н.Б. Иванова и др. ФТТ, 54 (2012)

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

13,0				
ter, A 15'2 -		Co _{2,4} Ga _{0,6} BO ₅	Fe ₃ BO ₅ Co ₂ FeBO ₅	
P parameter, A 11,5 -	O Co ₃ BO ₅	360 350 340 330		
11,0			0,62 0,63 0,64 0,65 r(M ³⁺), A	
0,6	0 0,61	^{0,62} r (M ³⁺), A	0,64 0,6	5

Главная компонента тензора ГЭП, V_{zz} , e/\AA^3

	M1	M2	M3	M4
Co ₂ FeBO ₅	0,186	0,040	0,234	-0,060
Co _{2.4} Ga _{0.6} BO ₅	0,200	0,068	0,249	-0,043

Структурные исследования

Кристаллографические слои, содержащие замещающие трехвалентные ионы. Проекции кристаллической структуры выполнены на плоскость и bc (a) и ac (б).

N.B. Ivanova et al. Low Temp. Phys. 38 (2012)

Н.Б. Иванова и др. ФТТ, 54 (2012)

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Фурье-образы, выделенные из EXAFS-спектров на K-краю C_0 и F_0 при 10-300 K для C_0 BO_5 , C_2 F_0 BO_5 .

Магнитные исследования Co₃BO₅

Ферримагнетик $T_N = 42 \text{ K}$ Магнитная анизотропия b-ось - «легкая ось»

	Направление	θ, Κ	μ _{eff} , μ _Β /ион	μ _{eff} (спиновое значение), μ _в /ион	<i>T</i> _N , K
Co PO	Ь	1,2	4,26	4.24	12
Co_3BO_5	С	-153,8	4.01	4,24	44

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Магнитные исследования Co₂FeBO₅

Терримагнетик **Т**_{N1} = 115 K

 $T_{N2} = 70 \text{ K}$

Магнитная анизотропия

b-ось - «легкая» ось

	Направление	θ, Κ	μ _{eff} , μ _Β /ион	<i>T</i> _^ , K
Co PO	Ь	1,2	4,26	42
Co_3BO_5	С	-153,8	4,01	44
	а	-89,3	3,83	70,
Co ₂ FeBO ₅	Ь	12,4	4,29	115
	С	-386,3	4,43	115

H||c 2 0 -2 130 K -4 -2 0 30 K -60 K -90 K -90 K 130 K H, T

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Зависимости коэрцитивного поля

Магнитные параметры кристаллов ${\rm Co_3BO_5}$ и ${\rm Co_2FeBO_5}$ в магнитоупорядоченном состоянии.

 M_0 - остаточная намагниченность,

 $H_{\mathcal{C}}$ - коэрцитивное поле

Материал	Направление	M_0 , μ_B /ион	$H_c(2 \text{ K}), \text{ T}$
Co PO	Ь	0.91	2.3
Co_3BO_5	С	_	
Co ₂ FeBO ₅	а	_	
	Ь	0.19	> 9
	С	_	_

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

XANES и XMCD исследования Co₂FeBO₅. L_{2,3} края

Спектры XAS и XMCD для Co_2FeBO_5 (Со и Fe L_{2.3}-края) при 5 К

Согласно структуре мультиплета: $10Dq \approx 1-1.5 \text{ eV} - \text{для Co}$ и для Fe ($L_{2,3}$ -края) $10Dq \approx 1.14 \text{ eV} - \text{для Fe}$ (K-край)

G. van der Laan et al. J. Phys.: Condens. Matter (1992)

$$\mu_{XMCD}(E) \Box |M(E)|^2 [\rho_{+}(E) - \rho_{-}(E)]$$

 $M\left(E
ight)$ - матричный элемент дипольного перехода

 $ho_{+}(E),
ho_{-}(E)$ - плотности незанятых состояний для спина вверх и вниз, соответственно.

С.Г. Овчинников УФН (1999)

B.T. Thole et al. PRL (1992)

P. Carra et al. PRL (1993)

М.С. Платунов и др. Письма в ЖЭТФ 96, 723 (2012)

Результаты расчета магнитных моментов

Петли гистерезиса (XMCD) для Co_2FeBO_5 (Со и Fe L_3 -края)

Правила сумм B.T. Thole et al. PRL (1992) P. Carra et al. PRL (1993)

$$m_{l} = -\frac{4\int_{L_{3}+L_{2}} (\mu_{+} - \mu_{-}) dE}{3\int_{L_{3}+L_{2}} (\mu_{+} + \mu_{-}) dE} (10 - n_{3d})$$

$$m_{s} = -\frac{6\int_{L_{3}} (\mu_{+} - \mu_{-}) dE - 4\int_{L_{3}+L_{2}} (\mu_{+} - \mu_{-}) dE}{\int_{L_{3}+L_{2}} (\mu_{+} + \mu_{-}) dE} (10 - n_{3d})$$

 $n_{\rm 3d}$ - число незанятых $3\,d$ состояний отдельного атома переходного металла

Индексами L_3 и L_2 обозначен интегральный диапазон энергий.

Температурные зависимости спинового и орбитального магнитных моментов Co и Fe в Co_2FeBO_5 .

XMCD исследования Co₂FeBO₅. К-край

Модель ориентации магнитных моментов для Co₂FeBO₅

Петли гистерезиса (XMCD) для Co_2FeBO_5 (Со и Fe L_3 -края)

Направления магнитных моментов Co и Fe для каждой позиции

Модель ориентации магнитных моментов для Co₂FeBO₅

Значения энергий внутри- и межподрешеточных обменных взаимодействий, К

$z_{ii}J_{ii}$	1(2d) ↑	2(2a) ↑	3(4h) ↓	4(4g) ↓
1(2d) ↑	+6,6	0	-2,0	-18,4
2(2a) ↑	0	+6,6	-20,8	-28,0
3(4h) ↓	-2,3	-23,4	-8,2	-13,8
4(4g) ↓	-9,2	-14,0	-13,8	-10,6

Направления магнитных моментов Со и Fe для каждой позиции

- 1. P.W. Anderson. Sol. St. Phys., 14, 99-214 (1963).
- 2. М.В. Еремин. В сб.: Спектроскопия кристаллов. Л., Наука, 1985, с.150-171.
- 3. О.А. Баюков, А.Ф. Савицкий. ФТТ, 36, 1923 (1994).
- 4. O.A. Bayukov, A.F. Savitskii. Phys. stat. sol. (b), **155**, 2, 249-255 (1989).

Основные выводы

- 1. Методом рентгеноструктурного анализа (XRD) изучена кристаллическая структура монокристаллов Co_3BO_5 и Co_2FeBO_5 . Показано, что ионы Fe^{3+} предпочитают позиции с наименьшим градиентом электрического поля кислородного октаэдра.
- 2. С использованием XANES- и EXAFS-спектроскопии исследована локальная атомная структура ионов переходных металлов в монокристаллах Co_3BO_5 и Co_2FeBO_5 , определены валентные состояния ионов Co и Fe. В целом результаты EXAFS-анализа соответствуют и уточняют рентгеноструктурные данные.
- 3. Для монокристаллов Co_3BO_5 и Co_2FeBO_5 установлен тип магнитного упорядочения, определены температуры магнитных фазовых переходов, величины коэрцитивного поля. В Co_3BO_5 и Co_2FeBO_5 обнаружена сильная магнитная кристаллографическая анизотропия типа «легкая ось». Обнаружен выраженный рост величины коэрцитивного поля с понижением температуры в Co_3BO_5 и Co_2FeBO_5 .
- 4. Впервые вблизи K- и $L_{3,2}$ -краев поглощения Co^{2+} и Fe^{3+} исследованы температурные и полевые зависимости XMCD-спектров в монокристаллах Co_3BO_5 и Co_2FeBO_5 . Обнаружена взаимная антипараллельная ориентация магнитных моментов кобальта и железа. Определены величины коэрцитивных полей, создаваемых ионами Co^{2+} и Fe^{3+} . Обнаружено сильное различие величин коэрцитивных полей, полученных интегральным и элементно-селективным методами. Разделены спиновый и орбитальный вклады в полные магнитные моменты Co^{2+} и Fe^{3+} .

Благодарности

Овчинников С.Г., Иванова Н.Б., Казак Н.В., Князев Ю.В., Безматерных Л.Н., Васильев А.Д., Заблуда В.Н., Баюков О.А., Эдельман И.С., Петров Д.А., Еремин Е.В., Великанов Д.А. и др. сотрудники института

НИЦ «Курчатовский институт» станция «Структурного материаловедения» (Москва) Зубавичус Я.В., Велигжанин А.А. и др.

Европейский центр синхротронного излучения (ESRF, Grenoble, France)

Andrei Rogalev, Fabrice Wilhelm и др.

Берлинский центр синхротронного излучения (BESSY, Berlin, Germany)

Eugen Weschke, Enrico Schierle и др.

Международная лаборатория сильных магнитных полей и низких температур (Wroclaw, Poland)

Нижанковский В.И. и др.

ЦКП "Сибирский центр синхротронного и терагерцевого излучения" (ИЯФ СО РАН) станция EXAFS-спектроскопии (Новосибирск) Канажевский В.В. и др.

Физический институт имени П.Н.Лебедева РАН (Москва) Гаврилкин С.Ю., О.М. Иваненко и др.

Экспериментальные исследования магнетиков

Дудн

 (M^{2+})

 (M^{2+})

 (M^{2+})

 (M^{2+})

Бораты

Магнитное поле

Объекты исследования:

Ива Пюдвигиты (ludwigites): Co_3BO_5 ; $Co_{3-x}Fe_xBO_5$; $Co_{3-x}Mn_xBO_5$

Варвикиты (warwickites): Mn_2BO_4 , $Mn_{2-x}Ge_xBO_4$, $Mn_{2-x}Co_xBO_4$, $FeCoBO_4$, $FeMqBO_4$, $FeCo_{0.5}Mq_{0.5}BO_4$

Пиробораты (pyroborates): Co₂B₂O₅, Co_{2-x}Ni_xB₂O₅

Котоиты (kotoites): $Co_3B_2O_6$, $Co_{3-x}Cu_xB_2O_6$

M²⁺ = Mg, Mn, Fe, Co, Ni, Cu, Zn...; Различные типы магнитных взаимодействий М³⁺ = Ti, V, Cr, Fe, Co, Ga...

Таблица 1. Весовые функции

Образец	Край поглощения	Интервал волновых векторов <i>К</i> , Å ⁻¹	Интервалы расстояний <i>R,</i> Å
Co_3BO_5	Со		11 21
Co₂FeBO₅	Со	2 - 12	1.1 - 3.4
	Fe		1.1 - 3.2

Таблица 2. Параметры координационного окружения кобальта и железа для Co_3BO_5 и Co_2FeBO_5 , полученные из подгонки EXAFS-данных r- межатомные расстояния,

N- координационное число,

R-фактор - величины отклонения $\chi_{\text{теор}}(k)$ от $\chi_{\text{эксп}}(k)$)

<i>T</i> , K	Путь Рассеяния	Расстояние <i>r</i> , Å	N	Фактор Дебая-Валлера $\hat{\sigma}^2$, \mathring{A}^2	<i>R</i> -факт <i>о</i> р
Co ₃ BO ₅	Co-O	2.03 2.14	4 2	0.0049	0.016
Co FoDO	Со-О	1,96 2,13	2 4	0.0037	0.033
Co ₂ FeBO ₅	Fe-O	2,02	6	0.0022	0.025

Фурье-трансформанты, выделенные из EXAFS-спектров на K-краю Co (слева) и K-краю Co и Fe (справа) при 300 К для Co_3BO_5 , Co_2FeBO_5 .

Selected geometric informations				
Atoms 1,2	d 1,2 [A]	Atoms 1,2	d 1,2 [A]	
Co1-O1	1.944(2)	Co4-O4 ^v	1.988(2)	
Co1-O2	2.047(3)	Co4-O4 ^{vii}	1.988(2)	
Co1-O4	2.1132(17)	Co4-O2 ^{vi}	2.1013(17)	
Co1-O4 ⁱ	2.1132(17)	Co4-O2 ^{viii}	2.1013(17)	
Co1-O3	2.1352(17)	Co4-O2 ^v	2.1013(17)	
Co1-O3 ⁱ	2.1352(17)	Co4-O2 ^{vii}	2.1013(17)	
Co1-Co1 ⁱⁱ	2.9660(3)	Co4-Co3 ^{ix}	2.7473(5)	
Co1-Co1 ⁱ	2.9660(3)	Co4-Co4 ⁱⁱ	2.9660(3)	
Co2-O1 ⁱⁱⁱ	1.998(2)	Co4-Co4 ⁱ	2.9660(3)	
Co2-O1	1.998(2)	O1-Co3 ⁱ	1.9294(16)	
Co2-O5 ^{iv}	2.1422(17)	O2-Co3 ^x	1.9782(16)	
Co2-O5 ⁱ	2.1422(17)	O2-Co3 ^{xi}	1.9782(16)	
Co2-O5 ⁱⁱⁱ	2.1422(17)	O2-Co4 ^{xii}	2.1013(17)	
Co2-O5	2.1422(17)	O2-Co4 ^{xiii}	2.1013(17)	
Co2-Co2 ⁱ	2.9660(3)	O3-B	1.380(4)	
Co2—Co2 ⁱⁱ	2.9660(3)	O3-Co3 ^x	1.982(2)	
Co3-O1 ⁱⁱ	1.9294(16)	O3-Co1 ⁱⁱ	2.1352(17)	
Co3-O1	1.9295(16)	04-B ^v	1.368(4)	
Co3-O5	1.974(2)	O4-Co4 ^{xiii}	1.988(2)	
Co3-O2 ^v	1.9782(16)	O4-Co1 ⁱⁱ	2.1132(17)	
Co3-O2 ^{vi}	1.9782(16)	O5-B ^{iv}	1.374(4)	
Co3-O3 ^v	1.982(2)	O5-Co2 ⁱⁱ	2.1422(17)	
Co3-Co4	2.7473(5)	B-04 ^x	1.368(4)	
Co3-Co3i	2.9660(3)	B-O5 ^{iv}	1.374(4)	
Co3-Co3 ⁱⁱ	2.9660(3)			

Таблица 3. Межионные расстояния в $Co_2FeO_2BO_3$

Co1-O1(I), Å	2.0375 (0.0018)	Co3-O1, Å	1.9608 (0.0014)	
Co1-O5(IV), Å	2.1571 (0.0013)	Co3–O2(III), Å	2.1696 (0.0013)	
Co1–O1(VIII), Å	2.0375 (0.0018)	Co3-O2(IX), Å	2.1696 (0.0013)	
Co1-O5(VI), Å	2.1571 (0.0013)	Co3–O3(III), Å	2.0693 (0.0021)	
Co1–O5(VIII), Å	2.1571 (0.0013)	Co3–O4, Å	2.1676 (0.0014)	
$\text{Co1-O5(II)}, \text{\AA}$	2.1571 (0.0013)	Co3-O4(VI), Å	2.1676 (0.0014)	
Co(Fe)2-O4(V), Å	2.0846 (0.0019)	$Co(Fe)(VII)4-O1(VII), \hat{A}$	1.9899 (0.0014)	
$Co(Fe)2-O_3(VII), A$	2.1008 (0.0014)	Co(Fe)(VII)4-O1(VIII), Å	1.9899 (0.0014)	
Co(Fe)2-O4, Å	2.0846 (0.0019)	Co(Fe)(VII)4-O2(VII), A	2.0858 (0.0021)	
$Co(Fe)2-O3(IX), \mathring{A}$	2.1008 (0.0014)	$Co(Fe)(VII)4-O3(VII), \mathring{A}$	2.1135 (0.0014)	
Co(Fe)2-O3(III), Å	2.1008 (0.0014)	Co(Fe)(VII)4-O3(VIII), Å	2.1135 (0.0014)	
Co(Fe)2-O3(VIII), Å	2.1008 (0.0014)	Co(Fe)(VII)4-O5, Å	2.1072 (0.0020)	
B-O2, Å		1.3891 (0.0037)		
B-O4, Å		1.3916 (0.0037)		
B-O5, Å		1.3809 (0.0034)		
Co(Fe)(VII)4-Co(Fe)2, Å		2.8446 (0.0005)		

Фурье-образы, выделенные из EXAFS-спектров на K-краю Co и Fe при 10-300 K для Co_3BO_5 , Co_2FeBO_5 .

Рис. 2. Изменение объема элементарной ячейки $Co_{3-x}Fe_xO_2BO_3$ с ростом концентрации замещения x.

Таблица 3. Параметры модельных квадрупольных дублетов для мёссбауэровского спектра Co₂FeO₂BO₃

$IS(\pm 0.02)$, mm/s	$QS(\pm 0.04),$ mm/s	$W(\pm 0.04),$ mm/s	$A(\pm 0.04), \%$	Позиция
0.365 0.358	0.537 0.764	0.215 0.193	0.092 0.164	2 <i>a</i>
0.352	0.947	0.190	0.286	4 <i>g</i>
0.348	1.109	0.165	0.171	
0.341	1.267	0.177	0.122	2 <i>d</i>
0.335	1.471	0.209	0.039	
0.362	1.780	0.254	0.066	4 <i>h</i>
0.361	2.005	0.248	0.059	

проведены на спектрометре МС-1104ЕМ при комнатной температуре

Результаты расчета магнитных моментов

Температурная зависимость отношения m/m_s для Co и Fe.

Правила сумм B.T. Thole et al. PRL (1992) P. Carra et al. PRL (1993)

$$m_{l} = -\frac{4\int_{L_{3}+L_{2}} (\mu_{+} - \mu_{-}) dE}{3\int_{L_{3}+L_{2}} (\mu_{+} + \mu_{-}) dE} (10 - n_{3d})$$

$$m_{s} = -\frac{6\int_{L_{3}} (\mu_{+} - \mu_{-}) dE - 4\int_{L_{3}+L_{2}} (\mu_{+} - \mu_{-}) dE}{\int_{L_{3}+L_{2}} (\mu_{+} + \mu_{-}) dE} (10 - n_{3d})$$

 $n_{\rm 3d}$ - число незанятых $3\,d$ состояний отдельного атома переходного металла

Индексами L_3 и L_2 обозначен интегральный диапазон энергий.

Температурные зависимости спинового и орбитального магнитных моментов Co и Fe в Co_2FeBO_5 .

XANES и XMCD исследования Co_3BO_5 и Co_2FeBO_5 . K-край

XANES/XMCD сигнал на Ккраю монокристаллов Co₃BO₅ и Co₂FeBO₅

М.С. Платунов Диссертация к.ф.-м.н. (2013)

XANES и XMCD исследования Co₂FeBO₅. К-край

XANES и XMCD исследования Co₂FeBO₅. К-край

Температурная зависимость величины расщепления кристаллического поля 10Dq, выделенная из предкраевой структуры вблизи *К*-края поглощения Fe.

М.С. Платунов Диссертация к.ф.-м.н. (2013)

Заключение

- XAFS (XANES, EXAFS) спектроскопия с использованием синхротронного излучения мощный инструмент исследования вещества на локальном уровне.
- XMCD уникальный инструмент для наблюдения магнитных превращений на локальном уровне (разделение спинового и орбитального вкладов).
- Получаемая информация уникальна, т.к. недоступна другим методам.
- Исследования требуют подготовки и трудоёмкого анализа данных.
- Комбинация с другими методами с использованием рентгеноструктурного анализа, магнитных и электрических исследований резко расширяет уровень знаний об объекте.

Модель ориентации магнитных моментов для Co₂FeBO₅

Направления магнитных моментов Co и Fe для каждой позиции

Измерения теплоемкости (литература)

Измерения теплоемкости составов Fe_3BO_5 , Co_3BO_5 , Co_2FeBO_5 , Ni_2FeBO_5

D.C. Freitas et al. PRB 79, 134437 (2009)

The specific-heat measurements confirm our conclusions in Sec. It that the low-temperature features observed in the magnetic behavior of the heterometallic compounds correspond to a freezing of the magnetic moments of the divalent ions. They are not associated with a true thermodynamic magnetic transition, as they have no corresponding features in the specific-heat measurements.

Метод валентных сумм

$$Z = \sum_{i} s_{ij} \qquad s_{ij} = \exp\left[\frac{\left(R_0 - r_{ij}\right)}{b}\right]$$

Зарядовое состояние катионов в Co_2 FeB O_5 , рассчитанные по BVS-методу

	M1	M2	M3	M4
Co ²⁺	1.92	2.02	1.95	2.20
Co ³⁺	1.65	1.74	1.68	1.90
Fe ²⁺	2.15	2.26	2.18	2.47
Fe ³⁺	2.29	2.42	2.33	2.64

Возбуждение при поглощении

Схема возбуждения фотоэлектронов с глубоких остовных уровней при поглощении рентгеновских квантов

$$\mu(hv) \square hv \sum_{f} |M_{if}|^{2} \delta(E_{i} - E_{f} + hv)$$

$$M_{if} = \int \Psi_f^* \sum_f (\vec{r}_n \cdot \vec{e}) \Psi_i d^3 r$$

 $M_{\it if}$ - матричный элемент, включающий волновые функции начального и конечного состояний

Исследования на K краях 3d металлов

Протяженная тонкая структура спектров (EXAFS) из-за рассеяния на потенциальном поле соседних атомов (длины связей и координационные числа).

Околопороговая структура (XANES) - валентность, плотность электронных состояний.

EXAFS

- Extended X-ray Absorption Fine Structure -

протяженная тонкая структура рентгеновских спектров поглощения XANES

- X-ray Near Edge Structure - околопороговая тонкая структура рентгеновских спектров поглощения

EXAFS уравнение

Из ab-initio вычислений или из подобных соединений

$$\chi(k) = -\frac{S_0^2}{k} \sum_s N_s \frac{|f_s(\pi,k)|}{R_s^2} e^{-k^2 \sigma_s^2} e^{-2R_s/\lambda_s} \sin\left(2kR_s + \phi_s(k)\right)$$
 Координационное число Фактор Межатомные расстояния Дебая-Валлера

Исследования на $L_{2,3}$ краях 3d металлов

XMCD - X-ray Magnetic Circular Dichroism - рентгеновский магнитный круговой дихроизм

Правила сумм

Правила сумм для 3*d* переходных металлов:

$$L = -\frac{4}{3}h_d \frac{\int_{L3+L2}(\mu_+ - \mu_-)dE}{\int_{L3+L2}(\mu_+ + \mu_-)dE} = -\frac{4}{3}h_d \frac{q}{t}$$

Проблемы применения правил сумм к реальным системам

- 1. Одиночный ион в кристаллическом поле нет многосферной гибридизации
- 2. Чистые p-d переходы (полное отсутствие p-s переходов)
- 3. Наличие дипольного терма D, связанного с анизотропией
- 4. Выбор h_{d} , что экспериментально не всегда очевидно
- 5. Спектры высокого качества

$$r = \frac{L}{S + D}$$

Это значение не зависит от h_d и может использоваться в сравнении с различными образцами

B. T. Thole *et al.* PRL **68**, 1943 (1992) P. Carra *et al.* PRL **70**, 694 (1993)