

ХАFS и XMCD методики в исследовании влияния катионного замещения на структурные и магнитные свойства оксиборатов на основе Co_{3-x}Me_xBO₅

<u>М.С. Платунов</u>¹, С.Г. Овчинников^{1,2}, В.Н. Заблуда¹, Н.Б. Иванова^{1,2}, Н.В. Казак¹, Ю.В. Князев², А. Rogalev³, F. Wilhelm³, E. Weschke⁴, E. Schierle⁴, Я.В. Зубавичус⁵

¹ Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия

² Сибирский федеральный университет, Красноярск, Россия

³ European Synchrotron Radiation Facility, Grenoble, France

⁴ Helmholtz-Zentrum Berlin - Bessy II, Berlin, Germany

⁵ НИЦ «Курчатовский институт», Москва, Россия

Федеральное государственное бюджетное учреждение науки Институт ФИЗИКИ ИМ. Л. В. Киренского Сибирского отделения Российской академии наук

Актуальность исследования

Объекты для фундаментальных исследований

- T = 300K (a) 1. Структурные и магнитные переходы; E(V/cm) decreasing + Fe²⁺(2) • Fe*(1.4 · · · Fe*(3 2. Зарядовое упорядочение [Fe₂BO₄, Fe₃BO₅]; :/ A lama² A. Akrap et al. PRB (2010) 0.2 T_{N3} T_{N2} T_N FeBO₂ 160 200 240 280 320 360 400 440 Temperature (K) J. Larrea J. et al. PRB (2004) 3. Электронные переходы 2.5 VBO [FeBO₃, VBO₃, GdFe₃(BO₃)₄] и 0.2 (cV) FeBO спиновый кроссовер [FeBO₃] T = 294 Kпод давлением; А.Г. Гаврилюк и др. Письма в ЖЭТФ (2008) 60 И. А. Троян и др. Письма в ЖЭТФ (2001) P (GPa)
- 4. Оптическая прозрачность [FeBO₃, ReFe₃(BO₃)₄, Co₂B₂O₅];
- 5. Низкоразмерные элементы в кристаллической структуре;
- 6. Сильные электронные корреляции

T. Kawano et al. J. Solid State sciences (2010)

Выбор объекта исследования

 $(M^{2+})_2(M^{3+})BO_5$ (ludwigite)

M²⁺ = Mg, Mn, Fe, Co, Ni, Cu, Zn...; M³⁺ = Ti, V, Cr, Fe, Co, Ga...

- низкоразмерные подструктуры ((цепочки, зигзаговые стенки, ленты) кристаллическая группа людвигитов - *Рbam* 4 неэквивалентные позиции
- сложное магнитное поведение: каскад магнитных переходов, дальний магнитный порядок, спиновое стекло, магнитная анизотропия

Разнообразные структурные элементы котоитов (а), пироборатов (б) и людвигитов (с).

Выбор объекта исследования

Выбор объекта исследования

Fe		
Анти	Объекты исследования:	
Τ _{Ν1} : Τ _{Ν2} :	Co ₃ BO ₅ ; Co _{3-x} Fe _x BO ₅	
	Цель работы:	
2.0 1.6 1.2 0.8 0.4 0.0 0 D. C. Fre J. Barto	Комплексное исследование взаимосвязи кристаллической и магнитной структуры кобальтсодержащих оксиборатов Co_3BO_5 и Co_2FeBO_5 , в том числе посредством синхротронного излучения. Задачи работы: 1.Определить <u>кристаллическую структуру</u> методом рентгеновской дифракции (XRD); 2.Изучить <u>локальную атомную структуру</u> с помощью EXAFS- спектроскопии; 3.Изучить <u>магнитные свойства</u> монокристаллов, ориентированных в различных кристаллографических направлениях; 4.Изучить <u>локальные магнитные свойства</u> посредством XMCD-спектроскопии в области жесткого и мягкого рентгеновского излучения.	PRB (2008

D. C. Freitas et al. PRB (2010)

Применяемые методики

- 1. Метод спонтанной кристаллизации из раствора-расплава Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- 3. Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle - BESSY II совместно с A. Rogalev и F. Wilhelm - ESRF

SRF, ID12 station Франция

ILHMFLT Польша

НИЦ «Курчатовский институт», станция СТМ Москва

BESSY, UE46_PGM-1 station Германия

Санкт-Петербург, 12 марта 2014

Применяемые методики

- 1. Метод спонтанной кристаллизации из раствора-расплава Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- 4. XAFS (XANES, EXAFS)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle - BESSY II совместно с A. Rogalev и F. Wilhelm - ESRF

ESRF, ID12 station Франция

ILHMFLT Польша

НИЦ «Курчатовский институт», станция СТМ Москва

BESSY, UE46_PGM-1 station Германия

Санкт-Петербург, 12 марта 2014

Применяемые методики

- 1. Метод спонтанной кристаллизации из раствора-расплава Безматерных Л.Н.
- 2. Монокристаллическая и порошковая рентгеновская дифракция (Bruker SMART APEX II, D8 ADVANCE) Васильев А.Д., Бовина А.Ф.
- Вибрационная и SQUID-магнитометрия (PPMS 6000, MPMS-XL - Quantum Design) Великанов Д.А., Еремин Е.В. совместно с Нижанковским В.И. - ILHMFLT
- ХАГЅ (XANES, EXAFЅ)-спектроскопия совместно с Зубавичусом Я.В.
- 5. XMCD-спектроскопия совместно с E. Weschke и E. Schierle – BESSY II совместно с A. Rogalev и F. Wilhelm – ESRF

ESRF, ID12 station Франция

ILHMFLT Польша

НИЦ «Курчатовский институт», станция СТМ Москва

BESSY, UE46_PGM-1 station Германия

Санкт-Петербург, 12 марта 2014

Получение кристаллов и структурные исследования

N.B. Ivanova et al. Low Temp. Phys. 38 (2012) Н.Б. Иванова и др. ФТТ, 54 (2012) Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Санкт-Петербург, 12 марта 2014

-0.043

0,200

0,068

0,249

 $Co_{24}Ga_{06}BO_{5}$

Структурные исследования

Кристаллографические слои, содержащие замещающие трехвалентные ионы. Проекции кристаллической структуры выполнены на плоскость и *bc* (а) и *ac* (б).

N.B. Ivanova et al. Low Temp. Phys. 38 (2012) Н.Б. Иванова и др. ФТТ, 54 (2012) Н.Б. Иванова и др. ЖЭТФ 140 (2011)

	d_{13}	d ₂₃	d ₃₄	d_{14}	d ₂₄
Co_3BO_5	3.298	3.051	3.085	3.005	2.747
Co ₂ FeBO ₅	3.450	3.122	3.167	3.058	2.845
$Co_{2,4}Ga_{0,6}BO_5$	3.404	3.089	3.123	3.031	2.822

Санкт-Петербург, 12 марта 2014

XANES и EXAFS исследования Со₃ВО₅ и Со₂FeBO₅. К-край

Магнитные исследования Co₃BO₅

Санкт-Петербург, 12 марта 2014

Магнитные исследования Co₂FeBO₅

Санкт-Петербург, 12 марта 2014

Магнитные исследования Co₃BO₅ и Co₂FeBO₅

Зависимости коэрцитивного поля

Магнитные параметры кристаллов Co_3BO_5 и Co_2FeBO_5 в магнитоупорядоченном состоянии.

 M_0 - остаточная намагниченность,

 H_{C} - коэрцитивное поле

Материал	Направление	<i>М</i> ₀ , μ _в /ион	<i>Н_с</i> (2 К), Т
	Ь	0.91	2.3
C03DO5	С	—	-
	а	—	-
Co ₂ FeBO ₅	Ь	0.19	> 9
	С	_	_

Н.Б. Иванова и др. ЖЭТФ 140 (2011)

Санкт-Петербург, 12 марта 2014

XANES и XMCD исследования Co₂FeBO₅. L_{2.3} края

Санкт-Петербург, 12 марта 2014

Результаты расчета магнитных моментов

Санкт-Петербург, 12 марта 2014

ХМС исследования Co₂FeBO₅. К-край

15/16

Модель ориентации магнитных моментов для Co₂FeBO₅

Модель ориентации магнитных моментов для Co₂FeBO₅

z _{ii} J _{ii}	1(2d) ↑	2(2a) ↑	3(4h) ↓	4(4g) ↓
1(2ď) ≀	+6,6	0	-2,0	-18,4
2(2a) ↑	0	+6,6	-20,8	-28,0
3(4h) ↓	-2,3	-23,4	-8,2	-13,8
4(4g) ↓	-9,2	-14,0	-13,8	-10,6

- 2. М.В. Еремин. В сб.: Спектроскопия кристаллов. Л., Наука, 1985, с.150-171.
- 3. О.А. Баюков, А.Ф. Савицкий. ФТТ, **36**, 1923 (1994).
- O.A. Bayukov, A.F. Savitskii. Phys. stat. sol. (b), 155, 2, 249-255 (1989).

каждой позиции

Санкт-Петербург, 12 марта 2014

- 1. Методом рентгеноструктурного анализа (XRD) изучена кристаллическая структура монокристаллов Co₃BO₅ и Co₂FeBO₅. Показано, что ионы Fe³⁺ предпочитают позиции с наименьшим градиентом электрического поля кислородного октаэдра.
- 2. С использованием XANES- и EXAFS-спектроскопии исследована локальная атомная структура ионов переходных металлов в монокристаллах Co₃BO₅ и Co₂FeBO₅, определены валентные состояния ионов Co и Fe. В целом результаты EXAFS-анализа соответствуют и уточняют рентгеноструктурные данные.
- 3. Для монокристаллов Co₃BO₅ и Co₂FeBO₅ установлен тип магнитного упорядочения, определены температуры магнитных фазовых переходов, величины коэрцитивного поля. В Co₃BO₅ и Co₂FeBO₅ обнаружена сильная магнитная кристаллографическая анизотропия типа «легкая ось». Обнаружен выраженный рост величины коэрцитивного поля с понижением температуры в Co₃BO₅ и Co₂FeBO₅.
- 4. Впервые вблизи К- и L_{3,2}-краев поглощения Co²⁺ и Fe³⁺ исследованы температурные и полевые зависимости XMCD-спектров в монокристаллах Co₃BO₅ и Co₂FeBO₅. Обнаружена взаимная антипараллельная ориентация магнитных моментов кобальта и железа. Определены величины коэрцитивных полей, создаваемых ионами Co²⁺ и Fe³⁺. Обнаружено сильное различие величин коэрцитивных полей, полученных интегральным и элементно-селективным методами. Разделены спиновый и орбитальный вклады в полные магнитные моменты Co²⁺ и Fe³⁺.

Благодарности

Институт физики СО РАН

Овчинников С.Г., Иванова Н.Б., Казак Н.В., Князев Ю.В., Безматерных Л.Н., Васильев А.Д., Заблуда В.Н., Баюков О.А., Эдельман И.С., Петров Д.А., Еремин Е.В., Великанов Д.А. и др. сотрудники института

НИЦ «Курчатовский институт» станция «Структурного материаловедения» (Москва) Зубавичус Я.В., Велигжанин А.А. и др.

Европейский центр синхротронного излучения (ESRF, Grenoble, France) Andrei Rogalev, Fabrice Wilhelm и др.

Берлинский центр синхротронного излучения (BESSY, Berlin, Germany) Eugen Weschke, Enrico Schierle и др.

Международная лаборатория сильных магнитных полей и низких температур (Wroclaw, Poland) Нижанковский В.И. и др.

ЦКП "Сибирский центр синхротронного и терагерцевого излучения" (ИЯФ СО РАН) станция EXAFS-спектроскопии (Новосибирск) Канажевский В.В. и др.

Физический институт имени П.Н.Лебедева РАН (Москва) Гаврилкин С.Ю., О.М. Иваненко и др.

M²⁺ = Mg, Mn, Fe, Co, Ni, Cu, Zn...; Различные типы магнитных взаимодействий M³⁺ = Ti, V, Cr, Fe, Co, Ga...

Фурье-трансформанты, выделенные из EXAFSспектров на *К*-краю Со (слева) и *К*-краю Со и Fe (справа) при 300 К для Со₃BO₅, Со₂FeBO₅.

Selected geometric informations						
Atoms 1,2	d 1,2 [A]	Atoms 1,2	d 1,2 [A]			
Co1-01	1.944(2)	Co4-O4 ^v	1.988(2)			
Co1-02	2.047(3)	Co4—O4 ^{vii}	1.988(2)			
Co1-04	2.1132(17)	Co4—O2 ^{vi}	2.1013(17)			
Co1-04 ⁱ	2.1132(17)	Co4—O2 ^{viii}	2.1013(17)			
Co1-03	2.1352(17)	Co4-02 ^v	2.1013(17)			
Co1-03 ⁱ	2.1352(17)	Co4—O2 ^{vii}	2.1013(17)			
Co1—Co1 ⁱⁱ	2.9660(3)	Co4—Co3 ^{ix}	2.7473(5)			
Co1—Co1 ⁱ	2.9660(3)	Co4—Co4 ⁱⁱ	2.9660(3)			
Co2-01 ⁱⁱⁱ	1.998(2)	Co4—Co4 ⁱ	2.9660(3)			
Co2-01	1.998(2)	01—Co3 ⁱ	1.9294(16)			
Co2-05 ^{iv}	2.1422(17)	O2-Co3 [×]	1.9782(16)			
Co2-05 ⁱ	2.1422(17)	O2—Co3 ^{xi}	1.9782(16)			
Co2–O5 ⁱⁱⁱ	2.1422(17)	O2—Co4 ^{xii}	2.1013(17)			
Co2-05	2.1422(17)	O2—Co4 ^{xiii}	2.1013(17)			
Co2—Co2 ⁱ	2.9660(3)	03—B	1.380(4)			
Co2—Co2 ⁱⁱ	2.9660(3)	O3—Co3 [×]	1.982(2)			
Co3-01 ⁱⁱ	1.9294(16)	O3—Co1 ⁱⁱ	2.1352(17)			
Co3-01	1.9295(16)	04—B ^v	1.368(4)			
Co3-05	1.974(2)	04—Co4 ^{×iii}	1.988(2)			
Co3-02 ^v	1.9782(16)	04—Co1 ⁱⁱ	2.1132(17)			
Co3-02 ^{vi}	1.9782(16)	O5—B ^{iv}	1.374(4)			
Co3-03 ^v	1.982(2)	O5—Co2 ⁱⁱ	2.1422(17)			
Co3-Co4	2.7473(5)	B-O4 [×]	1.368(4)			
Co3—Co3 ⁱ	2.9660(3)	B—O5 ^{iv}	1.374(4)			
Co3–Co3 ⁱⁱ	2.9660(3)					

ежионные	расстояния	в	Co ₂ FeO ₂ BO ₃
	ежионные	ежионные расстояния	ежионные расстояния в

1

Co1–O1(I), Å $2.0375 (0.0018)$		Co3–O1, Å	1.9608(0.0014)	
Co1–O5(IV), Å $2.1571 (0.0013)$		Co3–O2(III), Å	$2.1696\ (0.0013)$	
Co1–O1(VIII), Å 2.0375 (0.0018)		Co3-O2(IX), Å	$2.1696\ (0.0013)$	
Co1–O5(VI), Å 2.1571 (0.0013)		Co3–O3(III), Å	$2.0693\ (0.0021)$	
Co1-O5(VIII), Å	$2.1571 \ (0.0013)$	Co3–O4, Å	$2.1676\ (0.0014)$	
Co1-O5(II), Å	$2.1571 \ (0.0013)$	Co3-O4(VI), Å	2.1676(0.0014)	
Co(Fe)2-O4(V), Å	$2.0846\ (0.0019)$	m Co(Fe)(VII)4-O1(VII), Å	$1.9899\ (0.0014)$	
$Co(Fe)2-O_3(VII), Å$	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O1(VIII), Å	$1.9899\ (0.0014)$	
$Co(Fe)2-O4, \text{ \AA}$ 2.0846 (0.0019)		m Co(Fe)(VII)4-O2(VII), Å	$2.0858\ (0.0021)$	
Co(Fe)2-O3(IX), Å	$2.1008 \ (0.0014)$	$ m Co(Fe)(VII)4-O3(VII), \ \AA$	$2.1135\ (0.0014)$	
Co(Fe)2-O3(III), Å	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O3(VIII), Å	$2.1135\ (0.0014)$	
Co(Fe)2-O3(VIII), Å	$2.1008 \ (0.0014)$	Co(Fe)(VII)4-O5, Å	2.1072(0.0020)	
$B-O2, \text{ \AA}$		1.3891(0.0037)		
B-O4, A	l	1.3916 (0.0037)		
B-O5, A	À	1.3809(0.0034)		
Co(Fe)(VII)4–C	o(Fe)2, Å	2.8446(0.0005)		

Москва, 5 декабря 2013

Мёссбауэровские измерения

Таблица 3. Параметры модельных квадрупольных дублетов для мёссбауэровского спектра Co₂FeO₂BO₃

IS(±0.02), mm/s	$QS(\pm 0.04),$ mm/s	$W(\pm 0.04),$ mm/s	A(±0.04),%	Позиция
0.365	0.537	0.215	0.092	2 <i>a</i>
0.358	0.764	0.193	0.164	
0.352	0.947	0.190	0.286	4g
0.348	1.109	0.165	0.171	
0.341	1.267	0.177	0.122	2 <i>d</i>
0.335	1.471	0.209	0.039	
0.362	1.780	0.254	0.066	4 <i>h</i>
0.361	2.005	0.248	0.059	

Рис. 2. Изменение объема элементарной ячейк Со_{3-x}Fe_xO₂BO₃ с ростом концентрации замещения x.

проведены на спектрометре МС-1104ЕМ при комнатной температуре

Москва, 5 декабря 2013

Результаты расчета магнитных моментов

Москва, 5 декабря 2013

🖥 Москва, 5 декабря 2013

XANES и XMCD исследования Со₂FeBO₅. К-край

Москва, 5 декабря 2013

XANES и XMCD исследования Со₂FeBO₅. К-край

Температурная зависимость величины расщепления кристаллического поля 10Dq, выделенная из предкраевой структуры вблизи *К*-края поглощения Fe.

М.С. Платунов Диссертация к.ф.-м.н. (2013)

Москва, 5 декабря 2013

• XAFS (XANES, EXAFS) – спектроскопия с использованием синхротронного излучения – мощный инструмент исследования вещества на локальном уровне.

• XMCD – уникальный инструмент для наблюдения магнитных превращений на локальном уровне (разделение спинового и орбитального вкладов).

- Получаемая информация уникальна, т.к. недоступна другим методам.
- Исследования требуют подготовки и трудоёмкого анализа данных.

• Комбинация с другими методами с использованием рентгеноструктурного анализа, магнитных и электрических исследований резко расширяет уровень знаний об объекте.

Измерения теплоемкости (литература)

Измерения теплоемкости составов Fe_3BO_5 , Co_3BO_5 , Co_2FeBO_5 , Ni_2FeBO_5

D.C. Freitas et al. PRB 79, 134437 (2009)

The specific-heat measurements confirm our conclusions in Sec. I that the low-temperature features observed in the magnetic behavior of the heterometallic compounds correspond to a freezing of the magnetic moments of the divalent ions. They are not associated with a true thermodynamic magnetic transition, as they have no corresponding features in the specific-heat measurements.

$$Z = \sum_{i} s_{ij} \qquad s_{ij} = \exp\left[\frac{\left(R_0 - r_{ij}\right)}{b}\right]$$

Зарядовое состояние катионов в Co₂FeBO₅, рассчитанные по BVS-методу

	M1	M2	M3	M4
Co ²⁺	1.92	2.02	1.95	2.20
Co ³⁺	1.65	1.74	1.68	1.90
Fe ²⁺	2.15	2.26	2.18	2.47
Fe ³⁺	2.29	2.42	2.33	2.64

Возбуждение при поглощении

E

s,p

Схема возбуждения фотоэлектронов с глубоких остовных уровней при поглощении рентгеновских квантов

Исследования на К краях 3d металлов

Исследования на L_{2,3} краях 3d металлов

XMCD - X-ray Magnetic Circular Dichroism рентгеновский магнитный круговой дихроизм

B. T. Thole *et al.* PRL **68**, 1943 (1992) P. Carra *et al.* PRL **70**, 694 (1993)