

Single Crystal Neutron Diffraction. What 's new?

<u>Arsen Gukasov,</u> Laboratoire Léon Brillouin CEA-CNRS, Saclay, France

OUTLINE

- Present state of SC Diffraction
- Recent Applications of SC Diffraction
- Polarized Neutron Diffraction
- Spin density and local susceptibility
- Polarization Analysis
- Future Challenges

2014 the Year of Cristallography

Solids of Platon

fire earth air water

2014 the Year of Cristallography

Cristallographie Elémentaire

Cristallographie Elémentaire

Alimentaire

5 Two-Dimensional Bravais Lattices

Two-Dimensional Bravais Lattices *Jular Rectangular Square Hexagonal*

Rectangular

Two-Dimensional Bravais Lattices

Centered Bravais Lattices

 $D_{min} = 0.5 * D_{max} = a_1$

Two-Dimensional Space Groups

Square 2D Structures

P4

14 3D Bravais Lattices

Bravais	Parameters	Simple (P)	Volume	Base	Face
lattice			centered (I)	centered (C)	centered (F)
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$				
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^\circ$ $\alpha_{12} \neq 90^\circ$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^\circ$	$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $			
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^\circ$ $\alpha_{23} = \alpha_{31} = 90^\circ$				

230 Space Groupes

Bibliographic data Phase data Space-group F d -3 m (227) - cubic a=10.1400 Å V=1042.59 Å ³	Bibliographic data Phase data Space-group F d -3 m (227) - cubic a=10.1400 Å V=1042.59 Å ³	General					
Bibliographic data Phase data Space-group F d -3 m (227) - cubic a=10.1400 Å V=1042.59 Å ³	Bibliographic data Phase data Space-group F d -3 m (227) - cubic a=10.1400 Å V=1042.59 Å ³						
Phase data Space-group F d -3 m (227) - cubic Cell a=10.1400 Å V=1042.59 Å ³	Phase data Space-group F d -3 m (227) - cubic cell a=10.1400 Å V=1042.59 Å ³	Biblio	graphic data				
Phase data Space-group F d -3 m (227) - cubic Cell a=10.1400 Å V=1042.59 Å ³	Phase data Space-group F d -3 m (227) - cubic cell a=10.1400 Å V=1042.59 Å ³	3 p					
Phase data Space-group F d -3 m (227) - cubic Cell a=10.1400 Å V=1042.59 Å ³	Phase data Space-group F d -3 m (227) - cubic cell a=10.1400 Å V=1042.59 Å ³						
Space-group F d -3 m (227) - cubic Cell a=10.1400 Å V=1042.59 Å ³	Space-group F d -3 m (227) - cubic Cell V=1042.59 Å ³	Phase data					
Cell V=1042.59 Å ³	Cell V=1042.59 Å ³		E d. 2 m (2027)				
Cell a=10.1400 Å V=1042.59 Å ³	Cell a=10.1400 Å V=1042.59 Å ³	Space-group	F a -3 m (22/) - cubic				
V=1042.59 Å ³	V=1042.59 Å ³	c-11	a=10.1400 Å				
V=1042.33 A	V=1042.55 A	Cell	V-1042 59 Å ³				
			V=1042.39 A				

Atomic parameters									
Atom	0x.	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U	[Ų]
Tb1		16d	3m		1/2	1/2	1/2		
01		48f	2.mm		0.33500	1/8	1/8		
02		8b	-43m		3/8	3/8	3/8		
Ti		16c	3m		0	0	0		

Properties

Structure picture contents

•		
tomic parameters	4	
ymmetry records	48	
toms in unit cell	88	
xplicitely defined bo	0	

Cannonball problem

됩

The problem of close-packing of spheres was first mathematically analyzed by Thomas Harriot around 1587, after a question on piling cannon balls on ships was posed to him by Sir Walter Raleigh on their expedition to America. Cannonballs were usually piled in a rectangular or triangular wooden frame, forming a three-sided or four-sided pyramid. Both arrangements produce a face-centered cubic lattice with different orientation to the ground.

FCC and HCP structures Density 0.74

igure 1 – The hcp lattice (left) and the fcc lattice (right). The outline of each respective Bravais lattice is shown in red. The letters indicate which layers are the same. There re two "A" layers in the hcp matrix, where all the spheres are in the same position. All three layers in the fcc stack are different. Note the fcc stacking may be converted to the cp stacking by translation of the upper-most sphere, as shown by the dashed outline.

 iure 2 – Thomas Harriot, circa 1585, first pondered the mathematics of the cannonball
 Figure 3 – Shown here is a stack of eleven spheres of the hcp lattice illustrated in angement or cannonball stack, which has an fcc lattice. Note how adjacent balls along each
 Figure 1. The hcp stack differs from the top 3 tiers of the fcc stack shown in figure 2 only in the lowest tier; it can be modified to fcc by an appropriate rotation

Three-Dimensional Space Groups

2D Rectangular and 3D **Orthorhombic Structures**

Constanza Mirre, Maison du Chocolat

Tetragonal Rod Close Packings

Acta Cryst. (1977). A33, 914-923

Rod Packings and Crystal Chemistry

By M. O'KEEFFE* AND STEN ANDERSSON Kemicentrum, Lunds Universitet, Box 740, S-220 07 Lund 7, Sweden

The density is the same 0.7854.

P4/mmm

P4₂/mmc

I4₁/amd

Fig. 2. Tetragonal packing of parallel cylinders.

Fig. 3. Tetragonal layer packing of cylinders.

Fig. 5. Body-centred tetragonal layer packing of cylinders.

Cubic Rod Close Packings

Density 0.5890

Pm3n

Fig. 9. Primitive cubic cylinder packing.

Density 0.6802

I4₁/amd

Fig. 12. An element of body-centred cubic rod packing viewed down a trigonal axis.

Rod Close Packings

Acta Cryst. (1977). A33, 914-923

Rod Packings and Crystal Chemistry

By M. O'KEEFFE* AND STEN ANDERSSON Kemicentrum, Lunds Universitet, Box 740, S-220 07 Lund 7, Sweden

P6/mmm The density is 0.9069.

Fig. 1. Hexagonal (honeycomb) packing of parallel cylinders.

P4/mmm The density is 0.7854.

Fig. 2. Tetragonal packing of parallel cylinders.

Fourier transform (FT) and Diffraction pattern

Fourier transform (FT) and Diffraction pattern

Lattice , and its FT :

1 Molecule FT:

FT of the crystal = *Product of molecule FT and Rec. Latt. FT*

Time of flight (TOF) neutron Diffraction from a single crystal

Multiple reflections sorted by Time-Of-Flight

SXD at ISIS, TOPAZ at SNS

ESS Mag Diffractometer

SINGLE COUNTER DIFFRACTION

 $sin(\theta_{hkl}) = \lambda / 2D_{hkl}$

4-circles

First generation neutron diffractometers

 4- cercles : D9,D10, 6T2,5C2,TRICS (High resolution crystallography)

Bras levant : D3,D15, D23, 6T2, 5C1 (diffraction in extreme conditions)

UNPOLARISED NEUTRON DIFFRACTION 4-CIRCLES

- Structure determination
- Anharmonicity
- Microcrystals <0.05mm3 (PSD)</p>
- Epitaxial layers(PSD)

DIFFRACTION USING PSD

Diffraction conventionnelle:

Diffraction using PSD :

instrumentation program CAP2010

<0.1mm³

3T2 (2005)

Super-6T2(2006)

CAP2010-2015 commissioning Schedule

VIP

A. Goukassov, S. Rodrigues Operational since February 2011

Budget

380 k€ (50 kE Aquitaine

Cap2010-2015 New 7C2 Liquid and Amorphous Diffractometer B. Beuneu, B. Homatter, P. Lavie

256 position sensitive tubes
 (Ø ~ 1.2cm) 30b ³He
 efficiency 76% for 0.7Å
 × 5
 height 47 cm
 × 5

 modular geometry:
 blocks of 16 paired tubes (2 tubes make one detector: less electronics and cables)

Opens t

0.58Å measurements, more complex environments (HT), smaller samples, ...

S. Gautrot V. Klosek M.H. Mathon Take-off = 32°

≻16 tubes
>L=100×2,54 cm
>P≈ 12 bar

16 mars 2014

MICRO I. Mirebeau, N. Rey, F. Porcher Operational since March 2011

Conception (I. Goncharenko) : ~2004
 Construction : 2008-2009

✓ Operation started in march 2011

ORPHEE guide hall

4f Magnetism and its Effects on Electronic Properties of Dy₃Ru₄Al₁₂

D.I. Gorbunov^{1,2*}, M.S. Henriques³, A.V. Andreev¹, A. Gukasov⁴, V. Petříček¹, N.V. Baranov⁵, Y. Skourski⁶, V. Eigner¹, M. Paukov²

4*f* Magnetism and its Effects on Electronic Properties of Dy₃Ru₄Al₁₂

D.I. Gorbunov^{1,2*}, M.S. Henriques³, A.V. Andreev¹, A. Gukasov⁴, V. Petříček¹, N.V. Baranov⁵, Y. Skourski⁶, V. Eigner¹, M. Paukov²

Minimum SC size for neutron studies?

a,b,c<10 A V>0.01mm3

(X-rays >0.0001mm3)

D. Lebeugle,¹ D. Colson,¹ A. Forget,¹ M. Viret,¹ A. M. Bataille,² and A. Gukasov² ¹Service de Physique de l'Etat Condensé, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France ²Laboratoire Leon Brillouin, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France (Received 24 January 2008; published 2 June 2008)

BiFeO₃, 0.7x0.7x4.10⁻² mm³ CYCLOID WITH D=640 Å

High resolution mode

1.36 m instead of 56 cm

•Pixels $(2x2 \text{ mm}) \rightarrow \text{résolution de}$ $0.2^{\circ}x0.2^{\circ}$

D. Lebeugle,¹ D. Colson,¹ A. Forget,¹ M. Viret,¹ A. M. Bataille,² and A. Gukasov²

¹Service de Physique de l'Etat Condensé, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France ²Laboratoire Leon Brillouin. DSM/IRAMIS. CEA Saclay. F-91191 Gif-Sur-Yvette. France

Rotation plane : (-12-1) = $P_{[111]} \times q_1$

D. Lebeugle,¹ D. Colson,¹ A. Forget,¹ M. Viret,¹ A. M. Bataille,² and A. Gukasov²

¹Service de Physique de l'Etat Condensé, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France ²Laboratoire Leon Brillouin. DSM/IRAMIS. CEA Saclay. F-91191 Gif-Sur-Yvette. France

D. Lebeugle,¹ D. Colson,¹ A. Forget,¹ M. Viret,¹ A. M. Bataille,² and A. Gukasov²

¹Service de Physique de l'Etat Condensé, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France ²Laboratoire Leon Brillouin, DSM/IRAMIS, CEA Saclay, F-91191 Gif-Sur-Yvette, France (Received 24 January 2008; published 2 June 2008)

Neutron diffraction on thin films: what can we gain by using 2D detectors ?

V=0.02mm3

Cr 200 nm layer on Mg0

Laplacian of Gaussian filtering

UNPOLARISED NEUTRON DIFFRACTION NORMAL BEAM GEOMETRY

- H, T phase diagramm
- High pressure
- photoexcitation

Tb₂Ti₂O₇a spin liquid single crystal under pressure and applied field

- 6T2, Lifting counter mode
- 7.5 T + 40 mK
- 7.5 T +10 Gpa+40 mK

I.Mirebeau, I. N. Goncharenko, G. Dhalenne, A. Revcolevschi, Phys. Rev. Lett. 93, 187204 (2004).

Mapping of Spin ice on the water ice

If ferromagnetic interactions, the ground configuration is « two in – two out » spins Similar to ice ground state: « two close – two far » protons with zero point entropy

Spin ice

M.Harris, S Bramwell. Nature 399 (1999) 311 & A.P.Ramirez et al, Nature 399 (1999) 333

Cooling of Spin ice in field takes longer than without it

Magnetic monopoles in spin ice

C. Castelnovo¹, R. Moessner^{1,2} & S. L. Sondhi³

Fig. 3. Fragments of magnetic lattices with (a) no defects, (b) a pair of magnetic defects created by flipping a spin on the vertical bond, and (c, d) displacement of a magnetic defect downwards by a lattice spacing caused by a spin flip on the vertical bond. Hatched, closed, and open circles represent defect-free vertices and positive and negative magnetic defects, respectively. Double layered monopole structure in spin liquide A Sazonov, A Gukasov, I Mirebeau and P Bonville. Phys. Rev. B 85, 214420 (2012)

FIG. 3. Magnetic structures of $Tb_2Ti_2O_7$ spin liquid and Ho₂Ti₂O₇ spin ice in a [110] field. (a) Antimonopolar (doublelayered monopolar) structure of $Tb_2Ti_2O_7$. (b) Magnetically vacuum state of Ho₂Ti₂O₇.

FIG. 4. Elementary excitations in $Tb_2Ti_2O_7$ spin liquid and $Ho_2Ti_2O_7$ spin ice. (a) Antimonopolar (double-layered monopolar) structure of $Tb_2Ti_2O_7$ with vacuum pair excitations. (b) Magnetically vacuum state of $Ho_2Ti_2O_7$ with

Field-induced magnetic structures in Tb₂Ti₂O₇ spin liquid under field H || [111]

A. P. Sazonov,^{1,2,*} A. Gukasov,³ H. B. Cao,⁴ P. Bonville,⁵ E. Ressouche,⁶ C. Decorse,⁷ and I. Mirebeau³

FIG. 6. (Color online) Field variation of the angle α between the Tb2-4 magnetic moments and the applied field $H \parallel [111]$, as deduced from the refinement of the single-crystal neutron diffraction data with symmetry analysis (see Sec. III). The solid line is a calculation with the second variant of Model II described in Sec. V.

FIG. 1. (Color online) Zero-field neutron diffuse scattering maps in reciprocal space at 0.16 K in Tb₂Ti₂O₇: 3D equal intensity surface (left), experimental (upper central) and calculated (lower central) scattering in the (hhl) plane, experimental (right upper) and calculated (right lower) scattering in the (h + 1, h - 1, l) plane. The simulations were made in the presence of dynamic Jahn-Teller effect, with the anisotropic exchange tensor $\mathcal{J}_a = -0.068$ K, $\mathcal{J}_b = -0.196$ K, $\mathcal{J}_c = -0.091$ K, and $\mathcal{J}_{DM} = 0$.

FIG. 4. (Color online) Calculated diffuse scattering maps in the (*hhl*) plane of the reciprocal space for the spin-flip channel at 0.05 K, according to the geometrical setup of Ref. [20]. The q maps are represented in the spin liquid (SL) phase of our model (see Ref. [39]), which stands as a wedge between the antiferromagnetic (AF) phase and the ordered spin ice (OSI) phase. The figure is a sketch of a cut in the exchange parameter phase space for $\mathcal{J}_b = -0.196$ K [65]; the numbers above each map are the values (in K) of \mathcal{J}_a and \mathcal{J}_c . The map on the left labeled "exp." is the experimental spin-flip diffuse scattering in Tb₂Ti₂O₇ at 0.05 K from Ref. [20]; it has been placed close to the bottom left corner of

POLARIZED NEUTRON DIFFRACTION

 P_{θ} parallel to H

 P_{θ} antiparallel to H

 $R = I^{+}/I^{-} = (F_{N} + F_{M})^{2}/(F_{N} - F_{M})^{2}$

 $R = (1+\gamma)^2 / (1-\gamma)^2$, where $\gamma = F_M / F_N$

 $R \simeq 1 + 4\gamma$

 $F_{M}(q) = \gamma * F_{N}(q)$

PND APPLICATIONS

- Spin Densities
- Magnetic structure refinement
- Local Susceptibility Parameters (LSP)
- Formfactors, L/S ratio

5C1 polarised neutron diffractometer (LLB)

SPIN DENSITY OF Mn(dca)2(pym)H2O

pym=N2(CH)4 (pirimidine) $dca=N(CN)_2$ (dicianamide)

NON-COLLINEAR SPIN DENSITIES

ANISOTROPIC SYSTEMS UNDER MAGNETIC FIELD

F. Wang; A Gukasov et al., PRL, 2003 ORIGIN OF THE FIELD INDUCED METALIC STATE OF $(La_{0.4} Pr_{0.6) 1.2} Sr_{1.8} Mn_2 O_7$

$\boldsymbol{\chi_{ij}} = \begin{vmatrix} \boldsymbol{\chi_{11}} & \boldsymbol{\chi_{12}} & \boldsymbol{\chi_{13}} \\ \boldsymbol{\chi_{22}} & \boldsymbol{\chi_{23}} \end{vmatrix}$ **ANISOTROPIC SUSCEPTIBILITIES**

Bulk magnetisation $M_{i}(\mathbf{r}) = \chi_{ii}H_{i}$

The number of independent components of χ_{ii} is determined by the crystal symmetry class:

6

cubic groups all uniaxial groups **Orthorhombic Monoclinic Triclinic**

parameter 1 **2** parameters 3 4

 χ_{33}

ANISOTROPIC BULK SUSCEPTIBILITY

LOCAL SUSCEPTIBILITIES

 $I^{\pm} \propto N^{2} \pm 2 P_{0z} N M_{z} + M_{z}^{2}$

 $\boldsymbol{M}_{i} = \Sigma_{a} \chi^{a}_{ij} \boldsymbol{H}_{j}$

 $|\mathbf{I}^{\pm} \propto N^{2} \pm 2F_{N}(\mathbf{P}_{0}^{*} \Sigma \chi^{a}_{ij}\mathbf{H}_{j}) + |\Sigma \chi^{a}_{ij}\mathbf{H}_{j}|^{2}$

 $R = I^+ / I^{-}$, CHILSQ (CCSL)

A Gukasov and P J Brown, J Phys C, 14, 8831, 2002

Field-Induced Spin-Ice-Like Orders in Spin Liquid Tb₂Ti₂O₇

H. Cao,¹ A. Gukasov,¹ I. Mirebeau,¹ P. Bonville,² and G. Dhalenne.³

FIG. 1 (color online). Tb₂Ti₂O₇: Local anisotropic susceptibility ellipsoids $\chi_{ij}T$, measured at 10 K (a) and 270 K (b). Ellipsoids were scaled by temperature to compensate the Curie behavior. (c) Susceptibility components χ_{\parallel} and χ_{\perp} versus *T*. The lines are CF calculations. (d) Measured versus calculated flipping ratio at 10 K.

Ising versus XYanisotropy "as seen" by PND. H. Cao, A. Gukasov et al. PRL 103, 056402 (2009)

J. Phys.: Condens. Matter 22 (2010) 276003 (11pp)

doi:10.1088/0953-8984/22/27/276003

Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores

B Z Malkin¹, T T A Lummen^{2,4}, P H M van Loosdrecht², G Dhalenne³ and A R Zakirov¹

Figure 1. Measured (symbols) and calculated (solid curve) inverse bulk susceptibility of $Gd_2Ti_2O_7$. Inset (*a*) shows the data below 25 K. Inset (*b*): calculated components of the single ion (dashed curves) and the renormalized site susceptibility (solid curves) tensors.

Figure 2. Measured (symbols) and calculated (solid curve) inverse bulk susceptibility in Tb₂Ti₂O₇ single crystal (the disk with the demagnetizing factor N = 1.92). Inset: site susceptibilities measured in [27] (symbols) and calculated single ion susceptibilities in the crystal field (dotted curves 1), renormalized susceptibilities due to dipole–dipole interactions (dotted curves 2) and due to dipole–dipole and anisotropic exchange interactions (solid curves).

Can we measure ASPs on Powder samples?

powder Tb2Sn2O7 on Super-6T2, (measuring time 200 sec) 100k 5T 2k 5T

Control	CHARLES AND ADDRESS STREET, SHI
Data table	
Sum	
1897522	
x	
93	
Y	
49	
Intensity	
135	
Nu	1. 计控制的 化合理机 化合理机
-6,300	BE SHEELEN PROPERTY
Gamma	and a second sec
21,270	

24°

Can we measure ASPs on Powder samples?

J. Phys.: Condens. Matter 22 (2010) 502201 (5pp)

JOURNAL OF PHYSICS: CONDENSED MATTER doi:10.1088/0953-8984/22/50/502201

FAST TRACK COMMUNICATION

Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples

A Gukasov¹ and P J Brown²

Figure 1: (a) Section in the scattering plane perpendicular to the polarisation and magnetic field direction showing the geometry for scattering by a polycrystalline sample. (b) The shaded inset shows the plane perpendicular to the scattering vector \mathbf{k}_d of a reflection and indicates the locus of the magnetic interaction vectors of different contributing grains

Can we measure ASPs on Powder samples?

$$A = \frac{I^{+} - I^{-}}{I^{+} + I^{-}} = \frac{2\Re \left(N(\mathbf{k}) \mathbf{M}_{\perp}(\mathbf{k})^{*} \cdot \mathbf{P} \right)}{|N(\mathbf{k})|^{2} + |\mathbf{M}_{\perp}(\mathbf{k})|^{2}}$$

$$\langle |\mathbf{M}_{\perp}(\mathbf{k})|^{2} \rangle = \frac{H^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} |\mathbf{M}_{\perp}(\mathbf{k})|^{2} d\psi$$

$$= \frac{H^{2}}{\pi} \left[\left(\frac{\Xi_{11}^{2} + \Xi_{22}^{2}}{2} + \Xi_{12}^{2} \right) \psi + \left(\frac{\Xi_{12}(\Xi_{11} + \Xi_{22})}{2} \right) \cos 2\psi \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= H^{2} \left(\frac{\Xi_{11}^{2} + \Xi_{22}^{2}}{2} + \Xi_{12}^{2} \right)$$

$$(7)$$

and the mean value of $M_{\perp}(\mathbf{k}) \cdot \mathbf{P}$ is

$$\langle \mathbf{M}_{\perp}(\mathbf{k}) \cdot \mathbf{P} \rangle = \frac{PH}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\Xi_{11} \cos^2 \psi + 2\Xi_{12} \sin \psi \cos \psi + \Xi_{22} \sin^2 \psi \right) d\psi$$

$$= \frac{PH}{\pi} \left[\left(\frac{\Xi_{11} + \Xi_{22}}{2} \right) \psi + \Xi_{12} \cos 2\psi \right] = PH \left(\frac{\Xi_{11} + \Xi_{22}}{2} \right)$$

CHILSQ program in CCSL (P J Brown)

Can we measure ASPs with upolarized neutrons?

Extinction rule for pyrochlore impose (00h)=4n

I_m(400)~χ₁₁ Heisenberg behavior

 I_m (200)~ χ_{12} Ising or XY behavior

PND PROVIDES

Spin Densities

Magnetic structure refinement

- Atomic Susceptibility Parameters
- Non-collinear Magnetization Densities ?

Rectangular 2D Space Group

Rectangular 2D Space Group Pmm

Les images de la semaine

7 DÉCEMBRE 2013 À 09:29

Hommage à Mandela, violences en Centrafrique, manifestations en Ukraine et en Thaïlande, la loi sur la prostitution adoptée, Michelle Obama paniquée et la Valise Vuitton démontée... La sélection des images marquantes de l'actualité.

Pmm

4 décembre. Cérémonie d'accueil à la préfecture de police de Paris de la 226e promotion de gardiens de la paix et du personnel nouvellement affecté. Photo Pierre Andrieu. AFP

Photo-excitation setup at 5C1 diffractometer

Light Induced Excited Spin State Trapping (LIESST) in Fe(ptz)₆](BF₄)₂

λ ~ 514 nm

5. Decurtins et al. Inorg. Chem. 24 (1985) 2174

Very Intense Polarized Neutron DIFFRACTOMETER (5C1) at LLB

project started in 2006

PHYSICAL REVIEW B 89, 085115 (2014)

Towards a model of a dynamical Jahn-Teller coupling at very low temperatures in Tb₂Ti₂O₇

P. Bonville*

CEA, Centre de Saclay, DSM/IRAMIS/Service de Physique de l'Etat Condensé, 91191 Gif-sur-Yvette, France

A. Gukasov, I. Mirebeau, and S. Petit CEA, Centre de Saclay, DSM/IRAME/Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette, France

VIP Neutron DIFFRACTOMETER (5C1) deliverd in 2010

WISH diffractometer, ISIS TS2

Sap2010 New 7C2 Liquid and Amorphous Diffractometer B. Beuneu, B. Homatter (february 2012)

256 position sensitive tubes
(Ø ~ 1.2cm) 30b ³He
efficiency 76% for 0.7Å
× 5
height 47 cm
× 5

modular geometry: blocks of 16 paired tubes (2 tubes make one detector: less electronics and cables)

Opens t

0.58Å measurements, more complex environments (HT), smaller samples, ...

LAUE DIFFRACTOMETERS

Laue diffraction

difference patterns

short-range magnetic correlations

Tapiolite FeTa₂O₆ rods of magnetic scattering

Advantages:

 Large angular covering (9 rad) High Luminosity, Small crystals

Problems:

- High Background, hkl overlapping,
- Specrum Normalisation, Wavelength dependent corrections

Position Sensitive Detectors for Single Crystal

Relais de Courlande, LOGES-EN-JOSAS, November 12-14, 2008

SPIN DENSITY ON LIGANDS O²⁻ AND FORMFACTOR OF Ru in Sr2RuO4

ANOMALOUS SPIN DENSITY ON OXYGEN IN Ca(Sr)₂RuO₄

A Gukasov, M Braden, R J Papoular, S Nakatsuji and Y Maeno PRL, 89, 087202-1, 2002

 $\label{eq:Ru4+} Ru^{4+} \ \ 0.36(1) \mu_B \qquad \qquad O^{2-} \ \ 0.070(2) \mu_B \ \ \approx \ 19\% \ of \ Ru$

Position Sensitive Detectors for Single Crystal

Diffuse Scattering in Tb₂Ti₂O₇ at 160mK

2D cuts in BZ with step $\delta = (0.25, -0.25, 0)$ along the [1-10] axis

Tb2Ti2O7 H II[1-10], [hhl] cut

160mK, H=0T

160mK, H=1T

160mK, H=4T

310

Data Treatment (II)

- Final peak extraction using Res. Parameters
- Corrections (efficiency, Lorenz etc.)
- I (hkl), FR(hkl)

Evolution of Tb Anisotropy in TbMnO₃.

75 K

Crystal Structure of Ladder-Chain Compound Sr₁₄Cu₂₄O₄₁;

Sublattice CuO₂ $a=11.4698, b=13.3527, c_1=2.7268$ (Amma) Sublattice $Sr_2Cu_2O_3$ a=11.4698, b=13.3527, $c_2=3.9235$ (*Fmmm*) The $\gamma = c_1/c_2 = 0.698(8) \approx 0.7$ close to the commensurate value $\gamma = 7/10$. Leitern (h k 1) chain reflections Ketten (hk 0.7*1) ladder reflections Cu 0 🔘 Sr,Ca,La (hk0) common reflections of both

Reciprocal –space view

$\begin{array}{rcl} \mathbf{CuO}_2 & Amma & : & k+l = 2n \\ \mathbf{Sr}_2 \mathbf{Cu}_2 \mathbf{O}_3 & Fmmm & : & k, l = 2n \end{array}$

Reciprocal –space view

satellite (composite) reflections from interaction of lad-ch

Crystal Structure of Ladder-Chain Compound Sr₁₄Cu₂₄O₄₁;

$$q_{hklm} = ha^{*} + kb^{*} + lc_{1}^{*} + mc_{2}^{*} = ha^{*} + kb^{*} + (l + \gamma m)c_{1}^{*}$$

Crystal of cylindrical shape of about $4x3x2.5 \text{ mm}^3 \sim 20 \text{ mm}^3$

Measured reflections

1172, indep. 688., obs. $(I \ge 3 s(I))$ 502

hkl0	hk0m	$(hkl\pm 1)$	$(hkl\pm 2)$
6.25	3.11	11.86	36.66

*R*_{*F2*}

Sr₁₄Cu₂₄O₄₁, Super-Space Group refinement

TOWARDS A MODEL OF A DYNAMICAL JAHN-TELLER

PHYSICAL REVIEW B 89, 085115 (2014)

FIG. 2. (Color online) Neutron diffuse scattering maps in reciprocal space at 0.16 K in $Tb_2Ti_2O_7$ with a field applied along [110]. (Top) 3D equal intensity surfaces for a magnetic field of 1 (left) and 4 T (right). (Bottom) Cuts in the (*hhl*) plane of the maps at 1 (left) and 4 T (right).